精英家教网 > 高中数学 > 题目详情
已知的顶点分别为双曲线的左右焦点,顶点在双曲线上,则的值等于
A.B.C.D.
A

试题分析:易求双曲线的离心率为,在中,利用正弦定理和双曲线的定义知
点评:解决本小题的关键是根据正弦定理和双曲线的定义将要求解的量转化为双曲线离心率的倒数,圆锥曲线的定义在解题中经常用到,要灵活应用.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:=1(a>b>0)的离心率为,短轴一个端点到右焦点的距离为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若双曲线的右焦点与抛物线=12x的焦点重合,则m=______________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C1:,抛物线C2:,且C1、C2的公共弦AB过椭圆C1的右焦点.
(Ⅰ)当AB⊥轴时,求的值,并判断抛物线C2的焦点是否在直线AB上;
(Ⅱ)是否存在的值,使抛物线C2的焦点恰在直线AB上?若存在,求出符合条件的的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若曲线与曲线有四个不同的交点,则实数m的取值范围是(   )
A.()B.(,0)∪(0,)
C.[]D.()∪(,+)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆的离心率,过点的直线与原点的距离为。⑴求椭圆的方程;⑵已知定点,若直线与椭圆交于两点,问:是否存在的值,使以为直径的圆过点?请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设抛物线的焦点为,准线为,为抛物线上的一点,,垂足为.若直线的斜率为,则
A.4B.8C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线的实轴长是虚轴长的2倍,则rn=
A.B.C.2D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分) 已知在抛物线上,的重心与此抛物线的焦点F重合。
⑴ 写出该抛物线的标准方程和焦点F的坐标;
⑵ 求线段BC的中点M的坐标;
⑶ 求BC所在直线的方程。

查看答案和解析>>

同步练习册答案