精英家教网 > 高中数学 > 题目详情
已知向量=(cosωx,sin(π-ωx)),=(cosωx,sin(+ωx)),(ω>0),函数f(x)=2+1的最小正周期为2.
(1)求ω的值;
(2)求函数f(x)在区间[0,]上的取值范围.
【答案】分析:(1)利用两个向量的数量积公式,三角函数的恒等变换化简函数的解析式为f(x)=2sin(ωx+)+2,根据它的最小正周期等于2求出ω的值.
(2)根据x∈[0,],可得 πx+∈[],求出sin(πx+)的范围,即可求得函数的值域.
解答:解:(1)函数f(x)=2+1=2[cos2(ωx)+sinωx•cosωx]+1
=2•+2•sin2ωx+1=2sin(2ωx+)+2,
由于它的最小正周期等于2,故有 =2,∴ω=
故f(x)=2sin( πx+).
(2)∵x∈[0,],∴πx+∈[],∴≤sin( πx+)≤1,
∴3≤2sin(1+)+2≤4,故函数的值域为[3,4].
点评:本题主要考查两个向量的数量积公式,三角函数的恒等变换及化简求值,三角函数的周期性和求法,正弦函数的定义域和值域,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(cosα,sinα),
b
=(cosβ,sinβ),
c
=(1,7sinα),且0<β<α<
π
2
.若
a
b
=
13
14
a
c

(1)求β的值;
(2)求cos(2α-
1
2
β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cosθ,sinθ),向量
b
=(
3
,1
),且
a
b
,则tanθ的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cosωx,sinωx),
b
=(cosωx,
3
cosωx),其中(0<ω<2).函数,f(x)=
a
b
-
1
2
其图象的一条对称轴为x=
π
6

(I)求函数f(x)的表达式及单调递增区间;
(Ⅱ)在△ABC中,a、b、c分别为角A、B、C的对边,S为其面积,若f(
A
2
)
=1,b=1,S△ABC=
3
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•昌平区二模)已知向量
a
=(cosθ,sinθ),
b
=(
3
,-1
),-
π
2
≤θ≤
π
2

(Ⅰ)当
a
b
时,求θ的值;
(Ⅱ)求|
a
+
b
|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cosα,sinα),
b
=(cosβ,sinβ),若|
a
-
b
|=
2
,则
a
b
的夹角为(  )
A、60°B、90°
C、120°D、150°

查看答案和解析>>

同步练习册答案