精英家教网 > 高中数学 > 题目详情

已知函数和点,过点作曲线的两条切线,切点分别为

(Ⅰ)设,试求函数的表达式;

(Ⅱ)是否存在,使得三点共线.若存在,求出的值;若不存在,请说明理由.

(Ⅲ)在(Ⅰ)的条件下,若对任意的正整数,在区间内总存在个实数,使得不等式成立,求的最大值.

【解析】

,结合

进而得到,由于,于是得到,求出的取值范围,进

 ∴切线的方程为:

由(1)、(2),可得是方程的两根,

  ( * )

化简,得

解法:依题意,当区间的长度最小时,

得到的最大值,即是所求值.

长度最小的区间为

时,与解法相同分析,得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数和点,过点作曲线的两条切线,切点分别为

(1)求证:为关于的方程的两根;

(2)设,求函数的表达式;

(3)在(2)的条件下,若在区间内总存在个实数(可以相同),使得不等,则m的最大值,为正整数

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数和点,过点作曲线的两条切线,切点分别为

(Ⅰ)设,试求函数的表达式;

 (Ⅱ)是否存在,使得三点共线.若存在,求出的值;若不存在,请说明理由.

(Ⅲ)在(Ⅰ)的条件下,若对任意的正整数,在区间内总存在个实数,使得不等式成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数和点,过点作曲线的两条切线,切点分别为

(Ⅰ)设,试求函数的表达式;

(Ⅱ)是否存在,使得三点共线.若存在,求出的值;若不存在,请说明理由.

(Ⅲ)在(Ⅰ)的条件下,若对任意的正整数,在区间内总存在个实数,使得不等式成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河南省卢氏一高高三适应性考试理科数学 题型:解答题

(本小题满分12分) 已知函数和点,过点作曲线的两条切线,切点分别为

(1)求证:为关于的方程的两根;

(2)设,求函数的表达式;

(3)在(2)的条件下,若在区间内总存在个实数(可以相同),使得不等式成立,求的最大值.

 

 

查看答案和解析>>

同步练习册答案