【题目】在直角坐标系中,曲线C的参数方程为为参数),以原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线D的极坐标方程为.
(1)写出曲线C的极坐标方程以及曲线D的直角坐标方程;
(2)若过点(极坐标)且倾斜角为的直线l与曲线C交于M,N两点,弦MN的中点为P,求的值.
【答案】(1)曲线C的极坐标方程为;曲线D的直角坐标方程为;(2).
【解析】
(1)由曲线C的参数方程,利用三角函数的基本关系式,求得曲线C的普通方程,结合极坐标方程与直角坐标方程的互化公式,即可求得曲线C的极坐标方程和曲线D的直角坐标方程;
(2)根据题意,求得直线l的参数方程为为参数),代入曲线C的方程,结合一元二次方程根与系数的关系得,即可求解.
(1)由题意,曲线C的参数方程为为参数),即为参数)
平方相加,可得曲线C的普通方程为,
将代入曲线C的普通方程
可得曲线C的极坐标方程为,
又由曲线D的极坐标方程为,
所以,
又由
所以,
所以曲线C的极坐标方程为,
曲线D的直角坐标方程为.
(2)由点,则,即点A(2,2).
因为直线l过点A(2,2)且倾斜角为,
所以直线l的参数方程为为参数),代入,
可得,
设M,N对应的参数分别为,
由一元二次方程根与系数的关系得,
所以.
科目:高中数学 来源: 题型:
【题目】某工厂的某种产品成箱包装,每箱20件,每一箱产品在交付用户时,用户要对该箱中部分产品作检验.设每件产品为不合格品的概率都为,且各件产品是否合格相互独立.
(1)记某一箱20件产品中恰有2件不合格品的概率为,取最大值时对应的产品为不合格品概率为,求;
(2)现从某一箱产品中抽取3件产品进行检验,以(1)中确定的作为p的值,已知每件产品的检验费用为10元,若检验出不合格品,则工厂要对每件不合格品支付30元的赔偿费用,检验费用与赔偿费用的和记为,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,①已知点,直线,动点P满足到点Q的距离与到直线的距离之比为.②已知点是圆上一个动点,线段HG的垂直平分线交GE于P.③点分别在轴,y轴上运动,且,动点P满足.
(1)在①,②,③这三个条件中任选一个,求动点P的轨迹C的方程;
(注:如果选择多个条件分别解答,按第一个解答计分)
(2)设圆上任意一点A处的切线交轨迹C于M,N两点,试判断以MN为直径的圆是否过定点?若过定点,求出该定点坐标.若不过定点,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,右焦点为,左顶点为A,右顶点B在直线上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设点P是椭圆C上异于A,B的点,直线交直线于点,当点运动时,判断以为直径的圆与直线PF的位置关系,并加以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以原点为极点,轴正半轴为极轴建立极坐标系.已知直线的极坐标方程为,曲线的极坐标方程为.
(1)写出直线和曲线的直角坐标方程;
(2)过动点且平行于的直线交曲线于两点,若,求动点到直线的最近距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数只能同时满足下列三个条件中的两个:①函数的最大值为2;②函数的图象可由的图象平移得到;③函数图象的相邻两条对称轴之间的距离为.
(1)请写出这两个条件序号,并求出的解析式;
(2)求方程在区间上所有解的和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为坐标原点,椭圆的右焦点为,过的直线与相交于两点,点满足.
(1)当的倾斜角为时,求直线的方程;
(2)试探究在轴上是否存在定点,使得为定值?若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2sinx-xcosx-x,f′(x)为f(x)的导数.
(1)证明:f′(x)在区间(0,π)存在唯一零点;
(2)若x∈[0,π]时,f(x)≥ax,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com