精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=log2(1-x),g(x)=log2(1+x),令F(x)=f(x)-g(x).
(1)求F(x)的定义域;
(2)若a,b∈(0,1),猜想F(a)+F(b)与F($\frac{a+b}{1+ab}$)之间的关系并证明.

分析 (1)由真数大于零列出不等式组解出即可;
(2)分别求出F(a)+F(b)与F($\frac{a+b}{1+ab}$)的解析式,利用对数函数的单调性比较真数的大小即可得出结论.

解答 解:(1)由式子有意义得:
$\left\{\begin{array}{l}{1-x>0}\\{1+x>0}\end{array}\right.$,解得-1<x<1.
∴F(x)的定义域为(-1,1).
(2)F(x)=f(x)-g(x)=log2$\frac{1-x}{1+x}$,
F(a)+F(b)=log2$\frac{1-a}{1+a}$+log2$\frac{1-b}{1+b}$=log2$\frac{1-a-b+ab}{1+a+b+ab}$,
F($\frac{a+b}{1+ab}$)=log2$\frac{1-\frac{a+b}{1+ab}}{1+\frac{a+b}{1+ab}}$=log2$\frac{1-a-b+ab}{1+a+b+ab}$,
∴F(a)+F(b)=F($\frac{a+b}{1+ab}$).

点评 本题考查了对数函数的定义域,对数函数的单调性应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知a=22.1,b=21.9,c=0.32.1,则a,b,c大小关系为a>b>c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数g(x)是奇函数f(x)(x∈R)的导函数,f(1)=0,当x>0时,xg(x)-f(x)<0,则使得f(x)<0成立的x的取值范围是(  )
A.(-∞,-1)∪(0,1)B.(0,1)∪(1,+∞)C.(-∞,-1)∪(-1,0)D.(-1,0)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.下表是一个容量为60的样本(60名学生的数学考试成绩,成绩为0-100的整数)的频率分布表,则表中频率a的值为0.35.
分组0.5~20.520.5~40.540.5~60.560.5~80.580.5~100.5
频数3612
频率a0.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.根据流程图,若函数g(x)=f(x)-m在R上有且只有两个零点,则实数m的取值范围是(-∞,0)∪(1,4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.己知f(x)=$lo{g}_{2}\frac{1-x}{1+x}$.
(1)解不等式0≤f(x)≤1;
(2)是否存在m∈R使关于x的方程f(2x)=-x+log2m有实根?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.
(1)当m=-1时,求A∪B,∁R(A∩B);
(2)若A⊆B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=1+logax(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny-2=0上,其中mn>0,则$\frac{1}{m}+\frac{3}{n}$的最小
值为(  )
A.2+$\sqrt{3}$B.2-$\sqrt{3}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.计算:
(1)${({\frac{13}{6}})^0}+{({\frac{1}{2}})^{-2}}-{({\frac{25}{4}})^{\frac{1}{2}}}+{({0.001})^{\frac{1}{3}}}$
(2)$lg4+lg25-{5^{{{log}_5}3}}+({log_2}9).({log_3}4)$.

查看答案和解析>>

同步练习册答案