精英家教网 > 高中数学 > 题目详情
若不等式|x+2|+|x-1|≥a对于x∈R恒成立,则实数a的取值范围是
(-∞,3]
(-∞,3]
分析:首先分析题目已知不等式|x+2|+|x-1|≥a恒成立,求a的取值范围,故可以考虑设y=|x-1|+|x+2|,然后分类讨论去绝对值号,求解出函数y=|x-1|+|x+2|的最小值,然后把a小于等于最小值,即可满足条件.
解答:解:设y=|x-1|+|x+2|,
当-2≤x≤1时,y=-(x-1)+(x+2)=3
当x>1时,y=(x-1)+(x+2)=2x+1>3
当x<-2时,y=-(x-1)-(x+2)=-2x-1>3
故y=|x-1|+|x+2|有最小值3.
不等式|x+2|+|x-1|≥a恒成立即a必小于等于y=|x-1|+|x+2|的最小值3.
故取值范围为(-∞,3].
故答案为(-∞,3].
点评:此题主要考查绝对值不等式的解法问题,其中涉及到分类讨论去绝对值的思想,题目计算量小,涵盖知识点少,属于基础性题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网(从以下三题中选做两题,如有多选,按得分最低的两题记分.)
(A)AB是圆O的直径,EF切圆O于C,AD⊥EF于D,AD=2,AB=6,则AC长为
 

(B)若不等式|x-2|+|x+3|<a的解集为∅,则a的取值范围为
 

(C)参数方程
x=2cosα
y=2-cos2α
(α是参数)表示的曲线的普通方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

15、(不等式选讲)若不等式|x-2|+|x+3|<a的解集为∅,则实数a的取值范围为
(-∞,5]

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等式|x-2|+|x+3|>a,对于x∈R均成立,那么实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等式|x+2|+|3-x|<2a+1无解,则a的取值范围是
(-∞,2]
(-∞,2]

查看答案和解析>>

同步练习册答案