精英家教网 > 高中数学 > 题目详情
右图为一简单组合体,其底面ABCD为正方形,平面
,且="2" .
(1)答题卡指定的方框内已给出了该几何体的俯视图,请在方框
内画出该几何体的正(主)视图和侧(左)视图;
(2)求四棱锥B-CEPD的体积;
(3)求证:平面
(1)该组合体的主视图和侧视图如右下图示
(2)
(3)见解析
(1)该组合体的主视图和侧视图如右图示:-----3分
(2)∵平面平面
∴平面平面ABCD
 ∴BC平面----------5分
--6分
∴四棱锥B-CEPD的体积
.----8分
(3) 证明:∵平面
平面
∴EC//平面,------------------------------------10分
同理可得BC//平面----------------------------11分
∵EC平面EBC,BC平面EBC且 
∴平面//平面-----------------------------13分
又∵BE平面EBC  ∴BE//平面PDA------------------------------------------14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,平面平面,四边形都是直角梯形,

(Ⅰ)证明:四点共面;
(Ⅱ)设,求二面角的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在棱长为a的正方体ABCD—A1B1C1D1中,M、N分别是AA1、D1C1的中点,过D、M、N三点的平面与正方体的下底面相交于直线l;

(1)画出直线l;
(2)设l∩A1B1=P,求PB1的长;
(3)求D到l的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知正四棱柱ABCDA1B1C1D1中,底面边长AB=2,侧棱BB1的长为4,过点BB1C的垂线交侧棱CC1于点E,交B1C于点F
(1)求证:A1C⊥平面BDE
(2)求A1B与平面BDE所成角的正弦值。
(3)设F是CC1上的动点(不包括端点C),求证:△DBF是锐角三角形。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知一四棱锥P-ABCD的三视图如下,E是侧棱PC上的动点。
(Ⅰ)求四棱锥P-ABCD的体积;
(Ⅱ)是否不论点E在何位置,都有BD⊥AE?证明你的结论;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,平行六面体ABCD-A'B'C'D'中,AC=2,BC=AA'=A'C=2,∠ABC=90°,点O是点A'在底面ABCD上的射影,且点O恰好落在AC上.

(1)求侧棱AA'与底面ABCD所成角的大小;
(2)求侧面A'ADD'底面ABCD所成二面角的正切值;
(3)求四棱锥C-A'ADD'的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

长方体的各顶点都在球的球面上,其中两点的球面距离记为两点的球面距离记为,则的值为       

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题








A.25°B.30°C.45°D.60°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,底面是矩形,
的中点,的中点。
(Ⅰ)求异面直线所成的角;(Ⅱ)求二面角的大小。

查看答案和解析>>

同步练习册答案