精英家教网 > 高中数学 > 题目详情
设M(x0,y0)为抛物线C:y=
1
8
x2
上一点,F为抛物线C的焦点,以F为圆心、|FM|为半径的圆和抛物线C的准线相交,则y0的取值范围是(  )
A、(2,+∞)
B、[0,2]
C、(0,
1
32
D、(
1
32
,+∞)
考点:直线与圆锥曲线的关系
专题:圆锥曲线中的最值与范围问题
分析:由抛物线C:y=
1
8
x2
,可得焦点F(0,2),焦点F到准线l:y=-2的距离为4.由抛物线的定义可得|FM|=y0+2.于是以F为圆心、|FM|为半径的圆和抛物线C的准线相交的充要条件为|FM|>4.
解答: 解:由抛物线C:y=
1
8
x2
,可得焦点F(0,2),
焦点F到准线l:y=-2的距离为4.
∵M(x0,y0)为抛物线C:y=
1
8
x2
上一点,
∴|FM|=y0+2.
∵以F为圆心、|FM|为半径的圆和抛物线C的准线相交,
∴y0+2>4,
解得y0>2.
故选:A.
点评:本题考查了抛物线的标准方程及其性质、圆的性质,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若x∈A,且
1
x
∈A,则称A是“伙伴关系集合”.在集合M={-1,0,
1
4
1
3
1
2
,1,2,3,4}的所有非空子集中任选一个集合,则该集合是“伙伴关系集合”的概率为(  )
A、
1
17
B、
1
51
C、
31
511
D、
15
511

查看答案和解析>>

科目:高中数学 来源: 题型:

图①是一个边长为(m+n)的正方形,小明将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是(  )
A、(m+n)2-(m-n)2=4mn
B、(m+n)2-(m2+n2)=2mn
C、(m-n)2+2mn=m2+n2
D、(m+n)(m-n)=m2-n2

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合S={y|y=(
1
2
x-1,x∈R},T={y|y=log2(x+2)},S∪T=(  )
A、SB、T
C、RD、[-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α为锐角,且tanα=
2
-1,函数f(x)=2xtan2α+sin(2α+
π
4
),数列{an}的首项a1=1,an+1=f(an).
(1)求函数f(x)的表达式;
(2)若数列{bn}满足b1=a1,bn=log2(an+1),设Tn=
1
b1+n
+
1
b2+n
+…+
1
bn+n
,若Tn>m对n≥2恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集U=R,集合A={x|-1≤x<3},B={x|2x-4≥x-2}.则∁U(A∩B)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱锥P-ABC中,D、E分别是△PAB、△PBC的重心.求证:DE∥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,集合A={a-1,2a-1,a2+1},B={-3,a,2},如果A∩B={-3},求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD为矩形,ABEF为梯形,AD=
3
,AB=2AF=2EF=2BE=2,AB∥EF,平面ABCD⊥平面ABEF.
(1)求证:平面DAF⊥平面CBF;
(2)求二面角D-FC-B的正弦值.

查看答案和解析>>

同步练习册答案