精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
|x|x+2

(1)判断函数f(x)在区间(0,+∞)上的单调性,并加以证明;
(2)如果关于x的方程f(x)=kx2有四个不同的实数解,求实数k的取值范围.
分析:(1)判断函数f (x)在区间(0,+∞)上的单调性,并加以证明,先去绝对值号对函数表达式化简,根据其形式判断出函数的性质,再进行证明
(2)方程f (x)=kx2有四个不同的实数解,代入函数表达式,进行探究,由于方程带有绝对值,故需要分类去绝对值,在每一类中找出满足方程有两解的参数的值,合并既得.
解答:解:(1)函数f (x)在区间(0,+∞)上,证明如下:
∵f(x)=
|x|
x+2

∴当x>0时,f(x)=1-
2
x+2

y=
2
x+2
在(0,+∞)
上是减函数
∴f (x)在区间(0,+∞)上是增函数.(4分)
(2)原方程即:
|x|
x+2
=kx2
①由方程的形式可以看出,x=0恒为方程①的一个解.(5分)
②当x<0且x≠-2时方程①有解,则
-x
x+2
=kx2即kx2+2kx+1=0
当k=0时,方程kx2+2kx+1=0无解;
当k≠0时,△=4k2-4k≥0即k<0或k≥1时,方程kx2+2kx+1=0有解.
设方程kx2+2kx+1=0的两个根分别是x1,x2则x1+x2=-2,x1x2=
1
k

当k>1时,方程kx2+2kx+1=0有两个不等的负根;
当k=1时,方程kx2+2kx+1=0有两个相等的负根;
当k<0时,方程kx2+2kx+1=0有一个负根(8分)
③当x>0时,方程①有解,则
x
x+2
=kx2,kx2+2kx-1=0
当k=0时,方程kx2+2kx-1=0无解;
当k≠0时,△=4k2+4k≥0即k>0或k≤-1时,方程kx2+2kx-1=0有解.
设方程kx2+2kx-1=0的两个根分别是x3,x4
∴x3+x4=-2,x3x4=-
1
k

∴当k>0时,方程kx2+2kx-1=0有一个正根,
当k≤-1时,方程kx2+2kx+1=0没有正根.(11分).
综上可得,当k∈(1,+∞)时,方程f (x)=kx2有四个不同的实数解.(13分).
点评:本题第一问考查单调性的判断,题目较易,第二问由方程有四个解来求参数的范围,本题对思维的严密性要求很高,需要熟练运用分类讨论的思想,因为题目中有太多的不确定性,本题难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案