精英家教网 > 高中数学 > 题目详情

【题目】(本小题满分12分)

某工厂生产甲、乙两种产品,已知生产每吨甲、乙两种产品所需煤、电力、劳动力、获得利润及每天资源限额(最大供应量)如表所示:

产品
资源

甲产品
(每吨)

乙产品
(每吨)

资源限额
(每天)

煤(t

9

4

360

电力(kw·h

4

5

200

劳力(个)

3

10

300

利润(万元)

7

12


问:每天生产甲、乙两种产品各多少吨,获得利润总额最大?

【答案】每天生产甲20吨、乙24吨,获得利润总额最大

【解析】试题分析:解:设此工厂应分别生产甲、乙两种产品x吨、y吨,获得利润z万元 (1分)

依题意可得约束条件:

……4分) (2分)

利润目标函数7分)

如图,作出可行域,作直线,把直线l向右上方平移至l1位置,直线经过可行域上的点M,且与原点距离最大,此时取最大值. 10分)

解方程组,得M2024

故,生产甲种产品20t,乙种产品24 t,才能使此工厂获得最大利润. 12分)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (x≠0).
(1)证明函数f(x)为奇函数;
(2)判断函数f(x)在[1,+∞)上的单调性,并说明理由;
(3)若x∈[﹣2,﹣3],求函数的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1所示,在等腰梯形中, .把沿折起,使得,得到四棱锥.如图2所示.

(1)求证:面

(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个极值点,其中为常数, 为自然对数的底数.

(1)求实数的取值范围;

(2)证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于x的不等式(a2﹣a)4x﹣2x﹣1<0在区间(﹣∞,1]上恒成立,则实数a的取值范围为(
A.(﹣2,
B.(﹣∞,
C.(﹣
D.(﹣∞,6]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤的几组对照数据:

1

2

3

4

5

2

3

6

9

10

(1)请画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程

(3)已知该厂技术改造前100吨甲产品能耗为200吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)当时,试求的单调增区间;

(2)试求上的最大值;

(3)当时,求证:对于恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个命题:
①三点确定一个平面;
②三条两两相交的直线确定一个平面;
③在空间上,与不共面四点A,B,C,D距离相等的平面恰有7个;
④两个相交平面把空间分成四个区域.
其中真命题的序号是 (写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,A,B是海面上位于东西方向相距5(3+)海里的两个观测点,现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距20海里的C点的救援船立即即前往营救,其航行速度为30海里/小时,该救援船到达D点需要多长时间?

查看答案和解析>>

同步练习册答案