精英家教网 > 高中数学 > 题目详情
已知定义在R上的函数f(x)=ax3-2ax2+b(a>0)在区间[-2,1]上的最大值是5,最小值是-11.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若t∈[-1,1]时,f'(x)+tx≤0恒成立,求实数x的取值范围.
分析:(1)对函数f(x)进行求导,令导函数等于0求出x的范围判断函数在[-2,1]上的单调性,进而表示出函数在[-2,1]上的最大值,可求出a的值,确定函数f(x)的解析式.
(2)根据(1)中函数f(x)的导函数将问题f'(x)+tx≤0转化为3x2-4x+tx≤0成立,然后令g(t)=xt+3x2-4x,问题又转化为g(t)≤0在t∈[-1,1]上恒成立,再由一次函数的性质可得到答案.
解答:解:(Ⅰ)∵f(x)=ax3-2ax2+b,
∴f'(x)=3ax2-4ax=ax(3x-4)
令f'(x)=0,得x1=0,x2=
4
3
∉[-2,1]

因为a>0,所以可得下表:
精英家教网
因此f(0)必为最大值,∴f(0)=5,因此b=5,
∵f(-2)=-16a+5,f(1)=-a+5,∴f(1)>f(-2),
即f(-2)=-16a+5=-11,∴a=1,
∴f(x)=x3-2x2+5

(Ⅱ)∵f'(x)=3x2-4x,∴f'(x)+tx≤0等价于3x2-4x+tx≤0,
令g(t)=xt+3x2-4x,则问题就是g(t)≤0在t∈[-1,1]上恒成立时,求实数x的取值范围,
为此只需
g(-1)≤0
g(1)≤0
,即
3x2-5x≤0
x2-x≤0

解得0≤x≤1,所以所求实数x的取值范围是[0,1].
点评:本题主要考查函数的求导运算和函数在闭区间上的最值.导数时高考必考题,要重视.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的函数y=f(x)满足下列条件:
①对任意的x∈R都有f(x+2)=f(x);
②若0≤x1<x2≤1,都有f(x1)>f(x2);
③y=f(x+1)是偶函数,
则下列不等式中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足:f(x)=
f(x-1)-f(x-2),x>0
log2(1-x),       x≤0
  则:
①f(3)的值为
0
0

②f(2011)的值为
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足f(x+1)=-f(x),且x∈(-1,1]时f(x)=
1,(-1<x≤0)
-1,(0<x≤1)
,则f(3)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)是偶函数,对x∈R都有f(2+x)=f(2-x),当f(-3)=-2时,f(2013)的值为(  )
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x),对任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函数y=f(x+1)的图象关于直线x=-1对称,则f(2013)=(  )
A、0B、2013C、3D、-2013

查看答案和解析>>

同步练习册答案