精英家教网 > 高中数学 > 题目详情
19.在等比数列{an}中,a1=1,且a2是a1与a3-1的等差中项.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=$\frac{n(n+1){a}_{n}+1}{n(n+1)}$,(n∈N*).求数列{bn}的前n项和Sn

分析 (1)设等比数列{an}的公比为q,运用等比数列的通项公式和等差数列中项的性质,解方程可得q,进而得到所求通项公式;
(2)求出bn=$\frac{n(n+1)•{2}^{n-1}+1}{n(n+1)}$=2n-1+$\frac{1}{n}$-$\frac{1}{n+1}$,运用数列的求和方法:分组求和,以及裂项相消求和,结合等比数列的求和公式,化简整理即可得到所求和.

解答 解:(1)设等比数列{an}的公比为q,
a1=1,且a2是a1与a3-1的等差中项.
即有a1+a3-1=2a2
即为1+q2-1=2q,解得q=2(0舍去),
即有an=a1qn-1=2n-1
(2)bn=$\frac{n(n+1){a}_{n}+1}{n(n+1)}$=$\frac{n(n+1)•{2}^{n-1}+1}{n(n+1)}$=2n-1+$\frac{1}{n}$-$\frac{1}{n+1}$,
数列{bn}的前n项和Sn=(1+2+…+2n-1)+(1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$)
=$\frac{1-{2}^{n}}{1-2}$+1-$\frac{1}{n+1}$=2n-$\frac{1}{n+1}$.

点评 本题考查等比数列的通项公式和求和公式的运用,等差数列的中项的性质,考查数列的求和方法:分组求和,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.平面直角坐标系中,在直线x=1,y=1与坐标轴围成的正方形内任取一点,则此点落在曲线y=x2下方区域的概率为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{4}{9}$D.$\frac{5}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.从区间[0,1]随机选取三个数x,y,z,若满足x2+y2+z2>1,则记参数t=1,否则t=0,在进行1000次重复试验后,累计所有参数的和为477,由此估算圆周率π的值应为(  )
A.3.084B.3.138C.3.142D.3.136

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设$f(x)=\left\{\begin{array}{l}1-{x^2},x<1\\ lnx,x≥1\end{array}\right.$,若函数g(x)=f(x)-ax-1有4不同的零点,则a的取值范围为$(0,\frac{1}{e^2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知数列{an}满足:a1=4,an+1=$\frac{n+2}{n}$an+4+$\frac{4}{n}$(n∈N*),则an=5n2+n-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在平面直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}x=2sint\\ y=2cost\end{array}\right.,(t为参数)$,在以原点O为极点,x轴的非负半轴为极轴建立的极坐标系中,直线l的极坐标方程为$ρsin(θ+\frac{π}{4})=2\sqrt{2}$,A(2,0)
(Ⅰ)求圆C的普通方程和直线l的直角坐标方程;
(Ⅱ) AP是圆C上动弦,求AP中点M到l距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知圆${C_1}:{x^2}+{y^2}-2\sqrt{3}x-4y+6=0$和圆${C_2}:{x^2}+{y^2}-6y=0$,则两圆的位置关系为(  )
A.外离B.外切C.相交D.内切

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=x2+(a+2)x+b,若f(-1)=-2,且对于任意实数x都有f(x)≥2x.
(1)求f(x)的解析式;
(2)讨论函数f(x)在区间[-3,1]上的单调性;
(3)求函数f(x)在区间[-3,1]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知椭圆x2+$\frac{{y}^{2}}{{b}^{2}}$=1(0<b<1),其左、右焦点分别为F1、F2,|F1F2|=2c.若此椭圆上存在点P,使P到直线x=$\frac{1}{c}$的距离是|PF1|与|PF2|的等差中项,则b的最大值为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

同步练习册答案