精英家教网 > 高中数学 > 题目详情

【题目】某大学有A、B、C三个不同的校区,其中A校区有4000人,B校区有3000人,C校区有2000人,采用按校区分层抽样的方法,从中抽取900人参加一项活动,则A、B、C校区分别抽取(
A.400人、300人、200人
B.350人、300人、250人
C.250人、300人、350人
D.200人、300人、400人

【答案】A
【解析】解:A校区有4000人,B校区有3000人,C校区有2000人,
则4000:3000:2000=4:3:2,
由分层抽样的定义得A校区中抽出的学生900× =400,
B校区中抽出的学生900× =300,
C校区中抽出的学生900× =200,
故选:A.
【考点精析】本题主要考查了分层抽样的相关知识点,需要掌握先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】△ABC的三个内角A,B,C所对的边分别为a,b,c,向量 ,且
(1)求A的大小;
(2)现在给出下列三个条件:①a=1;② ;③B=45°,试从中选择两个条件以确定△ABC,求出所确定的△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线 的参数方程是 ,直线 的参数方程为
(1)求曲线 与直线 的普通方程;
(2)若直线 与曲线 相交于 两点,且 ,求实数 的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一边长为2的正三角形ABC的两个顶点A、B在平面α上,另一个顶点C在平面α上的射影为C',则三棱锥A﹣BC'C的体积的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校在高二年级开展了体育分项教学活动,将体育课分为大球(包括篮球、排球、足球)、小球(包括乒乓球、羽毛球)、田径、体操四大项(以下简称四大项,并且按照这个顺序).为体现公平,学校规定时间让学生在电脑上选课,据初步统计,在全年级980名同学中,有意申报四大项的人数之比为3:2:1:1,而实际上由于受多方面条件影响,最终确定的四大项人数必须控制在2:1:3:1,选课不成功的同学由电脑自动调剂到田径类.

(Ⅰ)随机抽取一名同学,求该同学选课成功(未被调剂)的概率;

(Ⅱ)某小组有五名同学,有意申报四大项的人数分别为2、1、1、1,记最终确定到田径类的人数为,求的分布列及数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,几何体是圆柱的一部分,它是由矩形(及其内部)以边所在直线为旋转轴旋转得到的, 的中点.

)设上的一点,且,求的大小;

)当时,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)在如图给定的直角坐标系内画出f(x)的图象;(直接画图,不需列表)

(2)写出f(x)的单调递增区间及值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设乒乓球团体比赛的规则如下:进行5场比赛,除第3场为双打外,其余各场为单打,参赛的每个队选出3名运动员参加比赛,每个队员打两场,且第1,2场与第4,5场不能是某个运动员连续比赛.某队有4名乒乓球运动员,其中 不适合双打,则该队教练安排运动员参加比赛的方法共有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的首项a1=3,且公差d≠0,其前n项和为Sn , 且a1 , a4 , a13分别是等比数列{bn}的b2 , b3 , b4 . (Ⅰ)求数列{an}与{bn}的通项公式;
(Ⅱ)证明

查看答案和解析>>

同步练习册答案