精英家教网 > 高中数学 > 题目详情
14.函数$y={log_{\frac{1}{2}}}(3-2x-{x^2})$的单调增区间为(-1,1),值域为[-2,+∞).

分析 根据对数函数以及二次函数的性质求出函数的单调区间,从而求出函数的值域即可.

解答 解:∵函数$y={log_{\frac{1}{2}}}(3-2x-{x^2})$,
而y=3-2x-x2的对称轴为:x=-1,
由3-2x-x2>0,解得:-3<x<1,
∴函数y=3-2x-x2在(-3,-1)递增,在(-1,1)递减,
根据函数同增异减的原则,
得:函数$y={log_{\frac{1}{2}}}(3-2x-{x^2})$的单调增区间为:(-1,1),
当x=-1时:函数$y={log_{\frac{1}{2}}}(3-2x-{x^2})$取得最小值为-2,
故函数的值域是[-2,+∞);
故答案为:(-1,1),[-2,+∞).

点评 本题考查了对数函数以及二次函数的性质,考查复合函数的单调性、最值问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知△ABC的外接圆半径为1,圆心为O,且3$\overrightarrow{OA}+4\overrightarrow{OB}+5\overrightarrow{OC}=\overrightarrow{0}$,则△ABC的面积为(  )
A.$\frac{8}{5}$B.$\frac{7}{5}$C.$\frac{6}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在(2x2-$\frac{1}{3\sqrt{x}}$)n的展开式中含常数项,则正整数n的最小值是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知某几何体的三视图(单位:cm)如图所示,则该几何体表面积是124+2$\sqrt{34}$cm2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=cosx•\sqrt{\frac{1+sinx}{1-sinx}}+sinx•\sqrt{\frac{1+cosx}{1-cosx}}$
(1)当$x∈(0,\frac{π}{2})$时,化简f(x)的解析式并求f(x)的对称轴和对称中心;
(2)当$x∈(π,\frac{3π}{2})$时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.计算:
(1)${(\sqrt{2}-1)^0}+{(\frac{16}{9})^{-\frac{1}{2}}}+{(\sqrt{8})^{-\frac{4}{3}}}$;
(2)${2^{{{log}_2}}}^{\frac{1}{4}}-{({\frac{8}{27}})^{-\frac{2}{3}}}+lg\frac{1}{100}+{(\sqrt{2}-1)^{lg1}}+2lg(\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.对于函数f(x)定义域中任意的x1,x2(x1≠x2),有如下结论:
 ①f(x1+x2)=f(x1)f(x2);
②f(x1x2)=f(x1)+f(x2);
 ③$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$.
当f(x)=ex时,上述结论中正确结论的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.将一个各个面上均涂有颜色的正方体锯成n3(n≥3)个同样大小的小正方体,从这些小正方体中任取1个,则其中三面都涂有颜色的概率为(  )
A.$\frac{1}{n^3}$B.$\frac{4}{n^3}$C.$\frac{8}{n^3}$D.$\frac{1}{n^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知圆C:(x+1)2+y2=8.
(1)设点Q(x,y)是圆C上一点,求x+y的取值范围;
(2)在直线x+y-7=0上找一点P(m,n),使得过该点所作圆C的切线段最短.

查看答案和解析>>

同步练习册答案