若直线过双曲线
的一个焦点,且与双曲线的一条渐近线平行.
(Ⅰ)求双曲线的方程;
(Ⅱ)若过点与
轴不平行的直线与双曲线相交于不同的两点
的垂直平分线为
,求直线
在
轴上截距的取值范围.
科目:高中数学 来源: 题型:解答题
在直角坐标系中,射线OA: x-y=0(x≥0),
OB: x+2y=0(x≥0),过点P(1,0)作直线分别交射线OA、OB于A、B两点.
(1)当AB中点为P时,求直线AB的方程;
(2)当AB中点在直线上时,求直线AB的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设圆C与两圆,
中的一个内切,另一个外切.
(1)求C的圆心轨迹L的方程;
(2)设直线l是圆O:在P(x0,y0)(x0y0 ≠ 0)处的切线,且P在圆上,l与轨迹L相交不同的A,B两点,证明:
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知离心率为的椭圆
上的点到左焦点
的最长距离为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)如图,过椭圆的左焦点任作一条与两坐标轴都不垂直的弦
,若点
在
轴上,且使得
为
的一条内角平分线,则称点
为该椭圆的“左特征点”,求椭圆的“左特征点”
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知,
,圆
,一动圆在
轴右侧与
轴相切,同时与圆
相外切,此动圆的圆心轨迹为曲线C,曲线E是以
,
为焦点的椭圆。
(1)求曲线C的方程;
(2)设曲线C与曲线E相交于第一象限点P,且,求曲线E的标准方程;
(3)在(1)、(2)的条件下,直线与椭圆E相交于A,B两点,若AB的中点M在曲线C上,求直线
的斜率
的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为和
,且|
|=2,
点(1,)在该椭圆上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过的直线
与椭圆C相交于A,B两点,若
A
B的面积为
,求以
为圆心且与直线
相切是圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知曲线的极坐标方程是
,以极点为原点,极轴为
轴正方向建立平面直角坐标系,直线的参数方程是:
(为参数).
(Ⅰ)求曲线的直角坐标方程;
(Ⅱ)设直线与曲线交于
,
两点,点
的直角坐标为
,若
,求直线的普通方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆过点
,且它的离心率
.直线
与椭圆
交于
、
两点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)当时,求证:
、
两点的横坐标的平方和为定值;
(Ⅲ)若直线与圆
相切,椭圆上一点
满足
,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com