精英家教网 > 高中数学 > 题目详情
(1)若x
1
2
+x-
1
2
=3,求
x
3
2
+x-
3
2
+2
x2+x-2+3
的值;
(2)计算(
1
3
)-1-log28+(0.5-2-2)×(
27
8
)
2
3
的值.
分析:(1)利用已知表达式,通过平方和与立方差公式,求出所求表达式的分子与分母的值,即可求解.
(2)直接利用指数与对数的运算性质求解即可.
解答:解:(1)因为x
1
2
+x-
1
2
=3,
所以x+x-1=7,
所以x2+x-2=47,
x
3
2
+x-
3
2
=(x
1
2
+x-
1
2
)(x+x-1-1)=3×(7-1)=18.
所以
x
3
2
+x-
3
2
+2
x2+x-2+3
=
18+2
47+3
=
2
5

(2)(
1
3
)
-1
-log28+(0.5-2-2)×(
27
8
)
2
3

=3-3log22+(4-2)×
9
4

=
9
2

故所求结果分别为:
2
5
9
2
点评:本题考查有理数指数幂的化简求值,立方差公式的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求值:
(1)若x
1
2
+x-
1
2
=3
,求
x
3
2
+x-
3
2
-3
x2+x-2-2
的值.
(2)已知lgx+lgy=2lg(x-2y),求log
2
x
y
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)若x
1
2
+x-
1
2
=3
,求
x
3
2
+x-
3
2
-3
x2+x-2-2
的值;
(2)化简
a3b2
3ab2
(a
1
4
b
1
2
)
4
3
b
a
(a>0,b>0).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求值:
(1)若x
1
2
+x-
1
2
=3
,求
x
3
2
+x-
3
2
-3
x2+x-2-2
的值.
(2)已知lgx+lgy=2lg(x-2y),求log
2
x
y
的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)若x
1
2
+x-
1
2
=3,求
x
3
2
+x-
3
2
+2
x2+x-2+3
的值;
(2)计算(
1
3
)-1-log28+(0.5-2-2)×(
27
8
)
2
3
的值.

查看答案和解析>>

同步练习册答案