精英家教网 > 高中数学 > 题目详情

(06年上海卷理)计算:                .

答案:

解析:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(06年上海卷理)已知集合A=-1,3,2-1,集合B=3,.若BA,则实数       .

查看答案和解析>>

科目:高中数学 来源: 题型:

(06年上海卷理)(14分)

在平面直角坐标系O中,直线与抛物线=2相交于A、B两点.

(1)求证:“如果直线过点T(3,0),那么=3”是真命题;

(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(06年上海卷理)(16分)

已知有穷数列共有2项(整数≥2),首项=2.设该数列的前项和为,且+2(=1,2,┅,2-1),其中常数>1.

(1)求证:数列是等比数列;

(2)若=2,数列满足=1,2,┅,2),求数列的通项公式;

(3)若(2)中的数列满足不等式||+||+┅+||+||≤4,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(06年上海卷理)(18分)

已知函数有如下性质:如果常数>0,那么该函数在0,上是减函数,在,+∞上是增函数.

(1)如果函数>0)的值域为6,+∞,求的值;

(2)研究函数(常数>0)在定义域内的单调性,并说明理由;

(3)对函数(常数>0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数是正整数)在区间[,2]上的最大值和最小值(可利用你的研究结论).

查看答案和解析>>

同步练习册答案