精英家教网 > 高中数学 > 题目详情

如图,在直三棱柱ABC-A1B1C1中,点M是A1B的中点,点N是B1C的中点,连接MN

(Ⅰ)证明:MN//平面ABC;
(Ⅱ)若AB=1,AC=AA1=,BC=2,求二面角A—A1C—B的余弦值的大小

(Ⅰ)详见解析;(Ⅱ)

解析试题分析:(Ⅰ)主要利用线线平行可证线面平行;(Ⅱ)通过作平行线转化到三角形内解角;当然也可建系利用空间向量来解;
试题解析:(Ⅰ)证明:连接AB1
∵四边形A1ABB1是矩形,点M是A1B的中点,
∴点M是AB1的中点;∵点N是B1C的中点,
∴MN//AC,∵MN平面ABC,AC平面ABC,
∴MN//平面ABC        6分
(Ⅱ)解 :(方法一)如图,作,交于点D,

由条件可知D是中点,连接BD,∵AB=1,AC=AA1=,BC=2,
∴AB2+AC2= BC2,∴AB⊥AC,
∵AA1⊥AB,AA1∩AC=A,∴AB⊥平面
∴AB⊥A1C, ∴A1C⊥平面ABD,∴为二面角A—A1C—B的平面角,在, 
在等腰中,中点,, ∴中,
中,
∴二面角A——B的余弦值是    12分
(方法二) 三棱柱为直三棱柱,

, ∴,∴
如图,建立空间直角坐标系,

则A(0,0,0), B(0,1,0), C(,0,0), A1(0,0,),
如图,可取为平面的法向量,
设平面的法向量为
,
则由
,不妨取m=1,则
可求得     12分
考点:立体几何线平行的证明、二面角的求解,考查学生的空间想象能力和空间向量的使用

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,面,底面是直角梯形,侧面是等腰直角三角形.且

(1)判断的位置关系;
(2)求三棱锥的体积;
(3)若点是线段上一点,当//平面时,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

四棱锥底面是平行四边形,面,,,分别为的中点.

(1)求证:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱锥中,

(Ⅰ)求证:
(Ⅱ)若的中点,求与平面所成角的正切值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在四棱锥中,底面为直角梯形,的中点.

(1)求证:平面
(2)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥A-BCD中,平行于BC的平面MNPQ分别交AB、AC、CD、BD于M、N、P、Q四点,且MN=PQ.

(1)求证:四边形为平行四边形;
(2)试在直线AC上找一点F,使得.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面是正方形,棱底面,=1,的中点.

(1)证明平面平面; 
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知斜三棱柱的底面是直角三角形, ,侧棱与底面所成角为,点在底面上的射影落在上.

(1)求证:平面
(2)若,且当时,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱柱中,平面

(Ⅰ)从下列①②③三个条件中选择一个做为的充分条件,并给予证明;
,②;③是平行四边形.
(Ⅱ)设四棱柱的所有棱长都为1,且为锐角,求平面与平面所成锐二面角的取值范围.

查看答案和解析>>

同步练习册答案