精英家教网 > 高中数学 > 题目详情

已知椭圆的内接三角形有一个顶点在短轴的顶点处,其重心是椭圆的一个焦点,求该椭圆离心率e的取值范围.


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
B
分析:设出椭圆方程,根据其内接三角形的一个顶点是短轴的一个顶点,重心是一个焦点,利用向量求出已知顶点对边的中点,由该中点在椭圆内部列式求椭圆离心率的范围.
解答:不防设椭圆方程:(a>b>0),
再不妨设:B(0,b),三角形重心G(c,0),
延长BG至D,使|GD|=
设D(x,y),则
,得:
解得:
而D是椭圆的内接三角形一边AC的中点,
所以,D点必在椭圆内部,

把b2=a2-c2代入上式整理得:

又因为椭圆离心率e∈(0,1),
所以,该椭圆离心率e的取值范围是
故选B.
点评:本题考查了椭圆的简单几何性质,考查了椭圆离心率的求法,求椭圆离心率范围的关键是利用椭圆的性质及平面几何知识,找到含有a和c的不等式.此题是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的内接三角形有一个顶点在短轴的顶点处,其重心是椭圆的一个焦点,求该椭圆离心率e的取值范围(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的内接三角形有一个顶点在短轴的顶点处,其重心是椭圆的一个焦点,求该椭圆离心率e的取值范围(  )
A.(0,
2
3
3
)
B.(0,
3
3
)
C.(
2
3
3
,1)
D.(
3
3
,1)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省成都七中高二(下)3月月考数学试卷(理科)(解析版) 题型:选择题

已知椭圆的内接三角形有一个顶点在短轴的顶点处,其重心是椭圆的一个焦点,求该椭圆离心率e的取值范围( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省成都七中高二(下)3月月考数学试卷(文科)(解析版) 题型:选择题

已知椭圆的内接三角形有一个顶点在短轴的顶点处,其重心是椭圆的一个焦点,求该椭圆离心率e的取值范围( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案