【题目】在四棱锥中, 平面,底面为矩形, ,该四棱锥的外接球的体积为,则到平面的距离为( )
A. B. C. D.
科目:高中数学 来源: 题型:
【题目】如图,四边形OQRP为矩形,其中P,Q分别是函数f(x)= sinwx(A>0,w>0)图象上的一个最高点和最低点,O为坐标原点,R为图象与x轴的交点.
(1)求f(x)的解析式
(2)对于x∈[0,3],方程f2(x)﹣af(x)+1=0恒有四个不同的实数根,求实数a的取值范围
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数的最小正周期为.
(1)求的值;
(2)将函数的图像向左平移个单位,再将得到的图像上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数的图像,求函数的单调递减区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中日“钓鱼岛争端”问题越来越引起社会关注,我校对高一名学生进行了一次“钓鱼岛”知识测试,并从中抽取了部分学生的成绩,(满分分)作为样本,绘制了下面尚未完成的频率分布表和频率分布直方图.
(1)填写答题卡频率分布表中的空格, 补全频率分布直方图, 并标出每个小矩形对应的纵轴数据;
(2)请你估算该年级的平均数及中位数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l1:3x+2y﹣1=0和l2:5x+2y+1=0的交点为A
(1)若直线l3:(a2﹣1)x+ay﹣1=0与l1平行,求实数a的值;
(2)求经过点A,且在两坐标轴上截距相等的直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米.观察者从距离墙x(x>1)米,离地面高a(1≤a≤2)米的C处观赏该壁画,设观赏视角∠ACB=θ.
(1)若a=1.5,问:观察者离墙多远时,视角θ最大?
(2)若tanθ= ,当a变化时,求x的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一张足够大的纸板上截取一个面积为3600平方厘米的矩形纸板ABCD,然后在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒(如图).设小正方形边长为x厘米,矩形纸板的两边AB,BC的长分别为a厘米和b厘米,其中a≥b.
(1)当a=90时,求纸盒侧面积的最大值;
(2)试确定a,b,x的值,使得纸盒的体积最大,并求出最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com