精英家教网 > 高中数学 > 题目详情
15.已知四边形ABCD满足AD∥BC,BA=AD=DC=$\frac{1}{2}$BC=a,E是BC的中点,将△BAE沿着AE翻折成△B1AE,使平面B1AE⊥平面ABCD,F,G分别为B1D,AE的中点.
(1)证明:B1E∥平面ACF;
(2)证明:平面B1GD⊥平面B1DC.

分析 (1)连接ED交AC于O,连接OF,利用AEDC为菱形,且F为B1D的中点得到FO∥B1E,利用线面平行的判定定理可证;
(2)连结GD,则DG⊥AE,又B1G⊥AE,B1G∩GD=G,判断AE⊥平面B1GD,利用面面垂直的判定定理可证.

解答 证明:(1)连接ED交AC于O,连接OF,
∵AEDC为菱形,且F为B1D的中点,
∴FO∥B1E,…(6分)
又B1E?面ACF,FO?平面ACF,
∴B1E∥平面ACF   …(8分)
(2)证明:连结GD,则DG⊥AE,又B1G⊥AE,B1G∩GD=G,
∴AE⊥平面B1GD.…(10分)
又AE∥DC,∴DC⊥平面B1GD,又DC?平面B1DC
∴平面B1GD⊥平面B1DC.…(12分)

点评 本题考查线面平行、面面垂直的判定定理的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.f(x)是奇函数,当x<0时,f(x)=log5(1-x),则f(4)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某厂家举行大型的促销活动,经测算某产品当促销费用为x万元时,销售量t万件满足t=5-$\frac{9}{2(x+1)}$(其中0≤x≤a,a为正常数).现假定生产量与销售量相等,已知生产该产品t万件还需投入成本(10+2t)万元(不含促销费用),产品的销售价格定为(4+$\frac{20}{t}$)万元/万件.
(I)将该产品的利润y万元表示为促销费用x万元的函数;
(II)促销费用投入多少万元时,厂家的利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知曲线f(x)=x2-1上两点A(2,3),B(2+△x,3△y),当△x=0.1,求割线AB斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数$f(x)=\left\{\begin{array}{l}2{x^3}+3{x^2}+m,0≤x≤1\\ mx+5,x>1\end{array}\right.$,若函数f(x)有且仅有两个零点,则实数m的取值范围是(-5,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.给定两个命题,命题p:对任意实数x都有ax2>-ax-1恒成立,命题q:关于x的方程x2-x+a=0有实数根.若“p或q”为真命题,“p且q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知四棱锥P-ABCD,底面ABCD是∠A=60°、边长为a的菱形,又PD⊥底面 ABCD,且PD=CD,点M、N分别是棱AD、PC的中点.
(1)证明:DN∥平面PMB;
(2)证明:平面PMB⊥平面PAD;
(3)直线PB与平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图1,在梯形ABCD中,AB∥DC,∠ABC=90°,AB=2DC=2BC=4,O是边AB的中点,将三角形AOD饶边OD所在直线旋转到A,OD位置,使得∠A,OB=120°,如图2,设m为平面A1DC与平面A1OB的交线.

(1)判断直线DC与直线m的位置关系并证明;
(2)若在直线m上的点G满足OG⊥A1D,求出A1G的长;
(3)求直线A1O与平面A1BD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知Rt△ABC的周长为定值l,则它的面积最大值为$\frac{3-2\sqrt{2}}{4}$.

查看答案和解析>>

同步练习册答案