精英家教网 > 高中数学 > 题目详情

【题目】为两条异面直线,为两个平面,,则下列结论中错误的序号是______.

至少与中一条相交; 至多与中一条相交;

至少与中一条平行; 必与中一条相交,与另一条平行.

【答案】②③④

【解析】

根据空间中直线与直线的位置关系,可以通过作图来说明四个选项的正误.

根据题意,异面直线与平面的位置关系有以下两种可能:

(图1

(图2

对①,用反证法.

若直线和直线都不相交,

又因为直线均共面,

则可得直线//直线

直线//直线,则//

两直线共面,

与两直线异面矛盾,

故①正确;

对②,图2即是反例,故②不正确;

对③,图2也是反例,故③不正确;

对④,图2也是反例,故④不正确.

综上所述:错误的有:②③④.

故答案为:②③④.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数是定义在R上的奇函数

(1)求实数的值

(2)如果对任意,不等式恒成立,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了纪念“一带一路”倡议提出五周年,某城市举办了一场知识竞赛,为了了解市民对“一带一路”知识的掌握情况,从回收的有效答卷中按青年组和老年组各随机抽取了40份答卷,发现成绩都在内,现将成绩按区间,,,进行分组,绘制成如下的频率分布直方图.

青年组

中老年组

(1)利用直方图估计青年组的中位数和老年组的平均数;

(2)从青年组,的分数段中,按分层抽样的方法随机抽取5份答卷,再从中选出3份答卷对应的市民参加政府组织的座谈会,求选出的3位市民中有2位来自分数段的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,已知, ,,D是边AC上的一点,将△ABC沿BD折叠,得到三棱锥A-BCD,若该三棱锥的顶点A在底面BCD的射影M在线段BC上,设BM=x,则x的取值范围是(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数图象相邻两条对称轴的距离为,将函数的图象向左平移个单位后,得到的图象关于y轴对称则函数的图象( )

A. 关于直线对称 B. 关于直线对称

C. 关于点对称 D. 关于点对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小王投资1万元2万元、3万元获得的收益分别是4万元、9万元、16万元为了预测投资资金x(万元)与收益y万元)之间的关系,小王选择了甲模型和乙模型.

1)根据小王选择的甲、乙两个模型,求实数a,b,c,p,q,r的值

2)若小王投资4万元,获得收益是25.2万元,请问选择哪个模型较好?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)求函数的极值;

(Ⅱ)求证:当时,存在,使得.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某地区2012年至2018年生活垃圾无害化处理量(单位:万吨)的折线图.

注:年份代码分别表示对应年份.

1)由折线图看出,可用线性回归模型拟合的关系,请用相关系数线性相关较强)加以说明;

2)建立的回归方程(系数精确到0.01),预测2019年该区生活垃圾无害化处理量.

(参考数据).

(参考公式)相关系数,在回归方程中斜率和截距的最小二乘估计公式分别为:.

查看答案和解析>>

同步练习册答案