精英家教网 > 高中数学 > 题目详情
1.若$\frac{cos2α}{sin(α+\frac{π}{4})}$=$\frac{1}{2}$,则sin2α的值为$\frac{7}{8}$.

分析 由条件利用两角和的正弦公式、二倍角公式求得,cosα-sinα,或 cosα+sinα的值,由此求得sin2α的值.

解答 解:∵由已知可得:2cos2α=sin($\frac{π}{4}$+α),
∴2(cos2α-sin2α)=$\frac{\sqrt{2}}{2}$(sinα+cosα),
∴cosα-sinα=$\frac{\sqrt{2}}{4}$,或cosα+sinα=0.
∵$\frac{cos2α}{sin(α+\frac{π}{4})}$=$\frac{cos2α}{\frac{\sqrt{2}}{2}(sinα+cosα)}$=$\frac{1}{2}$,可得:cosα+sinα≠0,
∴则cosα-sinα=$\frac{\sqrt{2}}{4}$,则有1-sin2α=$\frac{1}{8}$,sin2α=$\frac{7}{8}$;
故答案为:$\frac{7}{8}$.

点评 本题主要考查两角和差的正弦、余弦公式的应用,二倍角公式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知f(x)为一次函数,且f(f(f(x)))=8x+7,则f(x)等于(  )
A.2x+1B.x+2C.-2x+1D.8x+7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知f(x+1)=x2+2x,求f(2)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.用二分法求函数的零点,函数的零点位于区间[a,b]内.当|a-b|=m时,若取区间[a,b]的中点x1为函数的近似零点,则x1与真正零点x0的误差不超过(  )
A.mB.$\frac{m}{2}$C.2mD.$\frac{m}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=lg|x|的单凋递减区间为(-∞,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若圆心角为α=$\frac{π}{4}$,该角所对的弧长为l=20cm,求该角所在圆的半径(精确到1cm).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知直线l:y=kx+b(k,b∈R)和圆C:x2+y2-2y-4=0,
(1)请你具体给出k,b的一组值,使直线l和圆C相切;
(2)当直线l与圆C相离时,k,b应满足什么条件;
(3)若b-k=1,试判断直线l和圆C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,记角A,B,C的对边为a,b,c,角A为锐角,设向量$\overrightarrow m$=(cosA,sinA),$\overrightarrow n$=(cosA,-sinA),且$\overrightarrow m$•$\overrightarrow n$=$\frac{1}{2}$
(I)求角A的大小及向量$\overrightarrow m$与$\overrightarrow n$的夹角;
(II)若a=$\sqrt{5}$,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,A=60°,b=3,面积S=3$\sqrt{3}$,则a=$\sqrt{13}$.

查看答案和解析>>

同步练习册答案