精英家教网 > 高中数学 > 题目详情

【题目】设函数,其中.

(Ⅰ)当时,讨论函数的单调性;

(Ⅱ)若函数仅在处有极值,求的取值范围;

(Ⅲ)若对于任意的,不等式上恒成立,求的取值范围.

【答案】(1),内是增函数,,内是减函数.(2);(3).

【解析】

(Ⅰ)时,,解不等式得到的增区间和减区间.

(Ⅱ),因仅在取极值,故恒成立,故可得的取值范围.

(Ⅲ)可知恒成立,结合函数的单调性可知,故由可得的取值范围.

(Ⅰ).

,

.

,解得,,.

变化时,,的变化情况如下表:

极小值

极大值

极小值

所以,内是增函数,,内是减函数.

(Ⅱ),显然不是方程的根.

为使仅在处有极值,必须恒成立,即有.

解此不等式,.这时,是唯一极值.

因此满足条件的的取值范围是

(Ⅲ)由条件可知,从而恒成立.

,;,.

因此函数上的最大值是两者中的较大者.

为使对任意的不等式上恒成立,当且仅当

上恒成立,

所以,因此满足条件的的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为实数,已知

1)若函数,求的值;

2)当时,求证:函数上是单调递增函数;

3)若对于一切,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数其中.

(1)若函数处取得极值,求实数的值;

(2)(1)的结论下,若关于的不等式时恒成立的值

(3)令若关于的方程内至少有两个解,求出实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),若以直角坐标系中的原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为为参数).

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)若曲线与曲线有公共点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汽车“定速巡航”技术是用于控制汽车的定速行驶,当汽车被设定为定速巡航状态时,电脑根据道路状况和汽车的行驶阻力自动控制供油量,使汽车始终保持在所设定的车速行驶,而无需司机操纵油门,从而减轻疲劳,促进安全,节省燃料.某汽车公司为测量某型号汽车定速巡航状态下的油耗情况,选择一段长度为240km的平坦高速路段进行测试.经多次测试得到一辆汽车每小时耗油量F(单位:L)与速度v(单位:km/h)()的下列数据:

v

0

40

60

80

120

F

0

10

20

为了描述汽车每小时耗油量与速度的关系,现有以下三种函数模型供选择:

.

1)请选出你认为最符合实际的函数模型,并求出相应的函数解析式.

2)这辆车在该测试路段上以什么速度行驶才能使总耗油量最少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修44:坐标系与参数方程]

在平面直角坐标系中,倾斜角为的直线的参数方程为

为参数).以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标

方程是.

(1)写出直线的普通方程和曲线的直角坐标方程;

(2)已知点.若点的极坐标为,直线经过点且与曲线相交于两点,求两点间的距离的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)求的最小正周期和单调增区间

2)求图象的对称轴的方程和对称中心的坐标

3)在给出的直角坐标系中,请画出在区间上的图象并求其值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,则输出的值为( )

A. 2 B. C. D. -1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义域为的奇函数,且当时, ,设”.

(1)若为真,求实数的取值范围;

(2)设集合与集合的交集为,若为假, 为真,求实数的取值范围.

查看答案和解析>>

同步练习册答案