精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在直三棱柱中,平面DAC的中点.

1)求证:平面

2)求证:平面

3)设E上一点,试确定E的位置使平面平面BDE,并说明理由.

【答案】1)证明见详解,(2)证明见详解,(3)当的中点时,平面平面BDE,证明见详解

【解析】

1)连接相交于,可得,结合线面平行的判定定理即可证明平面

2)先证明即可得出平面,然后可得,又,即可证明平面

3)当的中点时,平面平面BDE,由已知易得,结合平面可得平面,进而根据面面垂直的判定定理得到结论.

1)如图,连接相交于,则的中点

连接,又的中点

所以,又平面平面

所以平面

2)因为,所以四边形为正方形

所以

又因为平面平面

所以

所以平面,所以

又在直三棱柱中,

所以平面

3)当的中点时,平面平面BDE

因为分别是的中点

所以,因为平面

所以平面,又平面

所以平面平面BDE

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,不等式恒成立.

(1)求函数的极值和函数的图象在点处的切线方程;

(2)求实数的取值的集合

(3)设,函数,其中为自然对数的底数,若关于的不等式至少有一个解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知多面体ABCA1B1C1A1AB1BC1C均垂直于平面ABCABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.

Ⅰ)证明:AB1⊥平面A1B1C1

求直线AC1与平面ABB1所成的角的正弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数 的最大值;

(2) ,且 ,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将集合中的元素作全排列,使得除了最左端的一个数之外,对于其余的每个数,在的左边某个位置上总有一个数与之差的绝对值为1.则满足条件的排列个数为____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若对于任意x∈R都有fx)+2f(-x)=3cosx-sinx,则函数f(2x图象的对称中心为( )

A. (kπ-,0)(k∈Z) B. ,0)(k∈Z)

C. (kπ-,0)(k∈Z) D. ,0)(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,则方程恰有2个不同的实根,实数取值范围__________________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】光伏发电是利用太阳能电池及相关设备将太阳光能直接转化为电能,近几年在国内出台的光伏发电补贴政策的引导下,某地光伏发电装机量急剧上涨,如下表:

年份

2011

2012

2013

2014

2015

2016

2017

2018

年份代码

1

2

3

4

5

6

7

8

新增光伏装机量兆瓦

0.4

0.8

1.6

3.1

6.1

7.1

9.7

12.2

某位同学分别用两种模型:①进行拟合,得到相应的回归方程并进行残差分析,残差图如下(注:残差等于

经过计算得,其中.

1)根据残差图,比较模型①,②的拟合效果,应该选择哪个模型?并简要说明理由.

2)根据(1)的判断结果及表中数据建立关于的回归方程,并预测该地区2020年新增光伏装机量是多少.(在计算回归系数时精确到0.01

附:归直线的斜率和截距的最小二乘估计公式分别为:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某一电视台对年龄高于40岁和不高于40岁的人是否喜欢西班牙队进行调查,40岁以上调查了50人,不高于40岁调查了50人,所得数据制成如下列联表:

不喜欢西班牙队

喜欢西班牙队

总计

40岁以上

50

不高于40

15

35

50

总计

100

已知工作人员从所有统计结果中任取一个,取到喜欢西班牙队的人的概率为,则有超过________的把握认为年龄与西班牙队的被喜欢程度有关.

参考公式与临界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.702

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案