【题目】已知点在圆上, 的坐标分别为, ,线段的垂直平分线交线段于点
(1)求点的轨迹的方程;
(2)设圆与点的轨迹交于不同的四个点,求四边形的面积的最大值及相应的四个点的坐标.
【答案】(1)(2)矩形的面积的最大值为,此时,
四个点的坐标为: , , , .
【解析】试题分析:(1)由线段垂直平分线性质得,再根据椭圆定义确定轨迹,最后根据基本量求方程(2)由题意得四边形为矩形,各点关于对称轴对称,因此可设点坐标,表示四边形的面积,再根据基本不等式求最值,最后求对应点坐标
试题解析:解:(Ⅰ)由已知得: ,而,
所以点的轨迹是以, 为焦点,长轴长的椭圆,
设,所以点的轨迹的方程: .
(Ⅱ)由对称性可知,四边形为矩形,不妨设为椭圆上第一象限的点,
则,
而, ,且,
所以,
当且仅当,即, 时,取“”,
所以矩形的面积的最大值为,此时,
四个点的坐标为: , , , .
科目:高中数学 来源: 题型:
【题目】已知函数f(x)的定义域为D,若对任意x1 , x2∈D,当x1<x2时,都有f(x1)≤f(x2),则称函数f(x)在D上为非减函数.设函数f(x)在[0,1]上为非减函数,且满足以下三个条件:①f(0)=0;② ;③f(1﹣x)=2﹣f(x).则 =( )
A.1
B.
C.2
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中点.求证:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合P={y|y=( )x , x>0},Q={x|y=lg(2x﹣x2)},则(RP)∩Q为( )
A.[1,2)
B.(1,+∞)
C.[2,+∞)
D.[1,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】A={x|x2﹣2x﹣8<0},B={x|x2+2x﹣3>0},C={x|x2﹣3ax+2a2<0},
(1)求A∩B.
(2)试求实数a的取值范围,使C(A∩B).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=ax﹣1(a>0,且a≠1).
(1)求f(2)+f(﹣2)的值;
(2)求f(x)的解析式;
(3)解关于x的不等式f(x)<4,结果用集合或区间表示.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司生产电饭煲,每年需投入固定成本40万元,每生产1万件还需另投入16万元的变动成本,设该公司一年内共生产电饭煲万件并全部销售完,每一万件的销售收入为万元,且(),该公司在电饭煲的生产中所获年利润为(万元),(注:利润=销售收入-成本)
(1)写出年利润(万元)关于年产量(万件)的函数解析式,并求年利润的最大值;
(2)为了让年利润不低于2360万元,求年产量的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com