精英家教网 > 高中数学 > 题目详情
方程|ex-1|+ax+1=0有两个不同的解,则实数a的取值范围是
a<-e
a<-e
分析:由题意得,函数y=|ex-1|与函数y=-ax-1 有两个不同的交点,结合图象得出结果.
解答:解:方程|ex-1|+ax+1=0有两个不同的解,
即方程|ex-1|=-ax-1有两个不同的实数解,即函数y=|ex-1|与函数y=-ax-1 有两个不同的交点.
y=|ex-1|的图象过定点(0,0),直线y=-ax-1 的图象过定点(0,-1),如图所示:
当直线直线y=-ax-1的斜率-a=e时,相切,
故直线y=-ax-1的斜率-a>e时,它们有两个交点,即a<-e.
故答案为:a<-e.
点评:本题考查方程根的个数的判断,体现了数形结合及转化的数学思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ex-x-a.
(1)求函数f(x)的单调区间;
(2)若f(x)≥0对任意x∈R都成立,求g(a)=1+a|a-3|的最大值;
(3)当a>1时,求关于x的方程ex-x-a=0的根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a>0且a≠1,命题p:y=loga(2-ax)在区间[0,
12
]
上为减函数;命题q:方程ex-x+a-3=0在[0,1]有解.若p∨q为真,p∧q为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

关于x的方程ex-1-|kx|=0(其中e=2.71828…是自然对数的底数)的有三个不同实根,则k的取值范围是(  )
A、{-2,0,2}B、(1,+∞)C、{k|k2>1}D、{k|k>e}

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省聊城市某重点高中高三(上)第二次调研数学试卷(文科)(解析版) 题型:解答题

已知实数a>0且a≠1,命题p:y=loga(2-ax)在区间上为减函数;命题q:方程ex-x+a-3=0在[0,1]有解.若p∨q为真,p∧q为假,求实数a的取值范围.

查看答案和解析>>

同步练习册答案