精英家教网 > 高中数学 > 题目详情
如图,过抛物线y2=2px(p>0)的焦点F的两条互相垂直的直线与抛物线分别交于点A、B和C、D;抛物线上的点T(2,t)(t>0)到焦点的距离为3.
(1)求p、t的值;
(2)当四边形ACBD的面积取得最小值时,求直线AB的斜率.
(1)有抛物线的定义可知点T(2,t),(t>0)到抛物线的准线的距离为3,
即有2+
p
2
=3
可得P=2,将T(2,t)代入y2=4x
得t=2
2

(2)∵F(1,0),故设直线AB的方程为:x=my+1(m<0),
联立抛物线方程y2=4x,消元可得:y2-4my-4=0,
令A(x1,y1),B(x2,y2),
则由抛物线的定义可得|AB|=|AF|+|BF|=x1+x2+2=m(y1+y2)+4=4m•m+4=4(m2+1).
∵CD⊥AB,∴CD直线的方程为:x=-
1
m
y+1

同理|CD|=4[(-
1
m
2+1]
从而S四边形ABCD=
1
2
|AB||CD|=
1
2
•16•(m2+1)(
1
m2
+1)

=8(2+m2+
1
m2
)
≥8(2+2
m2
1
m2
)

=32.(当m=-1时取等号).
因此四边形ABCD的面积的最小值为32,此时直线AB的斜率为-1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,长轴端点与短轴端点间的距离为
5

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点D(0,4)的直线l与椭圆C交于两点E,F,O为坐标原点,若OE⊥OF,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知A1(-3,0)A2(3,0)P(x,y)M(
x2-9
,0),若向量
A1P
λ
OM
A2P
满足(
OM
)2=3
A1P
A2P

(1)求P点的轨迹方程,并判断P点的轨迹是怎样的曲线;
(2)过点A1且斜率为1的直线与(1)中的曲线相交的另一点为B,能否在直线x=-9上找一点C,使△A1BC为正三角形.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,梯形ABCD的底边AB在y轴上,原点O为AB的中点,|AB|=
4
2
3
,|CD|=2-
4
2
3
,AC⊥BD.M为CD的中点.
(Ⅰ)求点M的轨迹方程;
(Ⅱ)过M作AB的垂线,垂足为N,若存在正常数λ0,使
MP
0
PN
,且P点到A、B的距离和为定值,求点P的轨迹E的方程;
(Ⅲ)过(0,
1
2
)的直线与轨迹E交于P、Q两点,求△OPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆C:x2+
y2
a2
=1(a>1)
的离心率为e,点F为其下焦点,点O为坐标原点,过F的直线l:y=mx-c(其中c=
a2-1
)与椭圆C相交于P,Q两点,且满足:
OP
OQ
=
a2(c2-m2)-1
2-c2

(Ⅰ)试用a表示m2
(Ⅱ)求e的最大值;
(Ⅲ)若e∈(
1
3
1
2
)
,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线C的中心在原点,抛物线y2=2
5
x
的焦点是双曲线C的一个焦点,且双曲线经过点(1,
3
)
,又知直线l:y=kx+1与双曲线C相交于A、B两点.
(1)求双曲线C的方程;
(2)若
OA
OB
,求实数k值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0),其左、右焦点分别为F1、F2,过F1作直线交椭圆于P、Q两点,△F2PQ的周长为4
3

(1)若椭圆的离心率e=
3
3
,求椭圆的方程;
(2)若M为椭圆上一点,
MF1
MF2
=1,求△MF1F2的面积最大时的椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直线l:x-y+9=0上任取一点M,过M作以F1(-3,0),F2(3,0)为焦点的椭圆,当M在什么位置时,所作椭圆长轴最短?并求此椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知一条曲线C在y轴右侧,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1.
(1)求曲线C的方程;
(2)设直线l交曲线C于A,B两点,线段AB的中点为D(2,-1),求直线l的一般式方程.

查看答案和解析>>

同步练习册答案