精英家教网 > 高中数学 > 题目详情

已知f(x)=x3-3x+m在区间[0,2]上任取三个数a,b,c,均存在以f(a),f(b),f(c)为边长的三角形,则实数m的取值范围是


  1. A.
    (6,+∞) 
  2. B.
    (5,+∞)
  3. C.
    (4,+∞)
  4. D.
    (3,+∞)
A
试题分析:由f′(x)=3x2-3=3(x+1)(x-1)=0得到x1=1,x2=-1(舍去),
∵函数的定义域为[0,2],∴函数在(0,1)上f′(x)<0,(1,2)上f′(x)>0,
∴函数f(x)在区间(0,1)单调递减,在区间(1,2)单调递增,则f(x)min=f(1)=m-2,
f(x)max=f(2)=m+2,f(0)=m,由题意知,f(1)=m-2>0 ①;f(1)+f(1)>f(2),
即-4+2m>2+m② 由①②得到m>6为所求.选A.
考点:1.函数的单调性;2.三角形的三边关系
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=x3ax在[1,+∞)上是单调增函数,则a的最大值是(  )

A.0                B.1

C.2                D.3

查看答案和解析>>

科目:高中数学 来源:2014届浙江省高二下学期期中考试理科数学试卷(解析版) 题型:选择题

已知f(x)=x3x,若abc∈R,且ab>0,ac>0,bc>0,则f(a)+f(b)+f(c)的值(   )

A.一定大于0        B.一定等于0        C.一定小于0        D.正负都有可能

 

查看答案和解析>>

科目:高中数学 来源:2012年人教A版高中数学必修1单调性与最大(小)值练习卷(二)(解析版) 题型:解答题

已知f(x)=x3+x(x∈R),

(1)判断f(x)在(-∞,+∞)上的单调性,并证明;

(2)求证:满足f(x)=a(a为常数)的实数x至多只有一个.

 

查看答案和解析>>

科目:高中数学 来源:2013届山东省高二下学期3月月考理科数学试卷(解析版) 题型:选择题

已知f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则a的取值范围为(   )

  A、-1<a<2    B、-3<a<6    C、a<-1或a>2    D、a<-3或a>6

 

查看答案和解析>>

科目:高中数学 来源:2013届浙江省杭州市高二第二学期3月月考理科数学试卷 题型:选择题

已知f(x)=x3+x,若a,b,c∈R,且a+b>0,a+c>0,b+c>0,则f(a)+f(b)+f(c)的值(  )

A.一定大于0  B.一定等于0   C.一定小于0  D.正负都有可能

 

查看答案和解析>>

同步练习册答案