精英家教网 > 高中数学 > 题目详情
6.已知数列{an}满足${a_1}=0,{a_{n+1}}=\frac{{{a_n}-\sqrt{3}}}{{\sqrt{3}{a_n}+1}}(n∈{N^*})$,则前200项的和为(  )
A.0B.$-\sqrt{3}$C.$\sqrt{3}$D.$\frac{{\sqrt{3}}}{2}$

分析 求出数列的前几项,即可得到数列{an}为周期为3的数列,则前200项的和S=66×(a1+a2+a3)+a1+a2,计算即可得到所求和.

解答 解:a1=0,a2=$\frac{0-\sqrt{3}}{\sqrt{3}×0+1}$=-$\sqrt{3}$,
a3=$\frac{-\sqrt{3}-\sqrt{3}}{-3+1}$=$\sqrt{3}$,a4=0,a5=-$\sqrt{3}$,…,
即有数列{an}为周期为3的数列,
则前200项的和S=66×(a1+a2+a3)+a1+a2
=66×(0-$\sqrt{3}$+$\sqrt{3}$)+0-$\sqrt{3}$=-$\sqrt{3}$.
故选:B.

点评 本题考查数列的求和,注意运用数列的周期性,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.函数f(x)同时满足:①对于定义域上的任意x,恒有f(x)+f(-x)=0;②对于定义域上的任意x1,x2.当x1≠x2时,恒有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0.则称函数f(x)为“理想函数”,则下列四个函数中:①f(x)=$\frac{1}{2}$;②f(x)=x2;③f(x)=$\left\{\begin{array}{l}{-{x}^{2},x≥0}\\{{x}^{2},x<0}\end{array}\right.$;④f(x)=log${\;}_{\frac{1}{2}}$($\sqrt{{x}^{2}+1}$+x)可以称为“理想函数”的有2个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系中,第一象限内的动点P(x,y)满足:
①与点A(1,1)、点B(-1,-1)连线斜率互为相反数;
②x+y<$\frac{5}{2}$.
(1)求动点P的轨迹C1的方程;
(2)若存在直线m与C1和椭圆C2:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)均相切于同一点,求椭圆C2离心率e的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}满足${a_{n+1}}=\frac{4}{{4-{a_n}}}(n∈{N^*}),{a_1}=0$,记数列{an}的前n项和为Sn,cn=Sn-2n+2ln(n+1)
(1)令${b_n}=\frac{2}{{2-{a_n}}}$,证明:对任意正整数n,|sin(bnθ)|≤bn|sinθ|
(2)证明数列{cn}是递减数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.要从高一(5)班50名学生中随机抽出5人参加一项活动,假设从0开始编号,用随机数表法进行抽样,从下表的第一个数1开始向右读数,则第5人的号码是(  )
随机数表:16 22 77 94 39  49 54 43 54 82  17 37 93 23 78  87 35 20 96 43.
A.49B.54C.44D.43

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.计算:(log62)•(log618)+(log63)2 的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知0<a<b,且a+b=1,则下列不等式中,正确的是(  )
A.log2a>0B.2a-b$<\frac{1}{2}$C.log2a+log2b<-2D.2${\;}^{\frac{b}{a}+\frac{a}{b}}$$<\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若函数$f(x)=\sqrt{|{x+1}|+|{x-t}|-2015}$的定义域为R,则实数t的取值范围是(  )
A.[-2015,2015]B.[-2014,2016]
C.(-∞,2014]∪[2016,+∞)D.(-∞,-2016]∪[2014,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为(  )
A.2.3B.2.4C.2.5D.2.6

查看答案和解析>>

同步练习册答案