【题目】设函数.
(1)若,证明:;
(2)已知,若函数有两个零点,求实数的取值范围.
【答案】(1)见证明;(2)
【解析】
(1)当时,利用导数求得函数的最大值,由此证得不等式成立.(2)先求得的表达式,将零点问题转化为有两个不相等的实根来解决.显然是方程的根.当,构造函数,利用导数来求得当有一个不为零的零点时的取值范围.
证明:(1)当时,,
所以,
所以当时,,此时函数单调递增;
当时,,此时函数单调递减.
所以当时,函数有极大值,也为最大值,
所以最大值为,
所以.
(2)因为函数有两个零点可转化为有两个零点,即关于的方程有两个不相等的实根,
易知0为方程的一个根,此时.
当时,只需有一个不为0的零点即可,
当时,,
故为减函数,
因为 ,,
故在上仅有1个零点,且不为0,满足题意;
当时,,不合题意;
当时,, ,
,根据零点的存在性定理可知在上至少有1个零点,当时,为负数,故在上也有零点,故不合题意.
综上,.
科目:高中数学 来源: 题型:
【题目】以椭圆:的中心为圆心,为半径的圆称为该椭圆的“准圆”.设椭圆的左顶点为,左焦点为,上顶点为,且满足,.
(1)求椭圆及其“准圆”的方程;
(2)若椭圆的“准圆”的一条弦与椭圆交于、两点,试证明:当时,弦的长为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年春节期间,我国高速公路继续执行“节假日高速免费政策”.某路桥公司为掌握春节期间车辆出行的高峰情况,在某高速收费点处记录了大年初三上午9:20~10:40这一时间段内通过的车辆数,统计发现这一时间段内共有600辆车通过该收费点,它们通过该收费点的时刻的频率分布直方图如图所示,其中时间段9:20~9:40记作区间,9:40~10:00记作,10:00~10:20记作,10:20~10:40记作.比方:10点04分,记作时刻64.
(1)估计这600辆车在9:20~10:40时间段内通过该收费点的时刻的平均值(同一组中的数据用该组区间的中点值代表);
(2)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取10辆,再从这10辆车中随机抽取4辆,记为9:20~10:00之间通过的车辆数,求的分布列与数学期望;
(3)由大数据分析可知,车辆在春节期间每天通过该收费点的时刻服从正态分布,其中可用这600辆车在9:20~10:40之间通过该收费点的时刻的平均值近似代替,可用样本的方差近似代替(同一组中的数据用该组区间的中点值代表),已知大年初五全天共有1000辆车通过该收费点,估计在9:46~10:40之间通过的车辆数(结果保留到整数).
参考数据:若,则,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:在左、右焦点分别为,,上顶点为点,若是面积为的等边三角形.
(1)求椭圆的标准方程;
(2)已知,是椭圆上的两点,且,求使的面积最大时直线的方程(为坐标原点).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】 在正方体ABCDA1B1C1D1中,若F,G分别是棱AB,CC1的中点,则直线FG与平面A1ACC1所成角的正弦值等于( )
A.B.
C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥的底面是正方形,侧棱底面,过作垂直交于点,作垂直交于点,平面交于点,点为上一动点,且,.
(1)试证明不论点在何位置,都有;
(2)求的最小值;
(3)设平面与平面的交线为,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点在椭圆上,且椭圆的离心率为.
(1)求椭圆的方程;
(2)若为椭圆的右顶点,点是椭圆上不同的两点(均异于)且满足直线与斜率之积为.试判断直线是否过定点,若是,求出定点坐标,若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点,点P为平面上的动点,过点P作直线l:的垂线,垂足为Q,且.
Ⅰ求动点P的轨迹C的方程;
Ⅱ设点P的轨迹C与x轴交于点M,点A,B是轨迹C上异于点M的不同的两点,且满足,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com