精英家教网 > 高中数学 > 题目详情
已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0≤φ≤
π
2
)在(0,5π)内只取到一个最
大值和一个最小值,且当x=π时,函数取到最大值2,当x=4π时,函数取到最小值-2
(1)求函数解析式;
(2)求函数的单调递增区间;
(3)是否存在实数m使得不等式f(
-m2+2m+3
)>f(
-m2+4
)成立,若存在,求出m的取值范围.
分析:(1)由函数的最值求得A=2,由周期求得ω=
1
3
.再由当x=π时,函数取到最大值2,并结合0≤φ≤
π
2
,可得 φ=
π
6
,从而求得函数的解析式.
(2)令2kπ-
π
2
x
3
+
π
6
≤2kπ+
π
2
,k∈z,求得x的范围,可得函数的增区间.
(3)由于
-m2+2m+3
∈[0,2],
-m2+4
∈[0,2].要使不等式f(
-m2+2m+3
)>f(
-m2+4
)成立,需
-m2+2m+3
-m2+4

≥0,解此不等式求得m的范围.
解答:解:(1)由题意可得A=2,半个周期为
1
2
ω
=4π-π=3π,∴ω=
1
3
.再由2sin(
1
3
•π+φ)=2,可得sin(
π
3
+φ)=1,
结合0≤φ≤
π
2
,可得 φ=
π
6
,故 f(x)=2sin(
1
3
x+
π
6
)

(2)令2kπ-
π
2
x
3
+
π
6
≤2kπ+
π
2
,k∈z,可得 6kπ-2π≤x≤6kπ+π,故函数的增区间为[6kπ-2π,6kπ+π](k∈Z).
(3)由于-m2+2m+3=-(m-1)2+4≤4,0≤-m2+4≤4,∴
-m2+2m+3
∈[0,2],
-m2+4
∈[0,2].
要使不等式f(
-m2+2m+3
)>f(
-m2+4
)成立,需
-m2+2m+3
-m2+4
≥0,
解得
1
2
<m≤2
,故m的范围是 (
1
2
,2].
点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,求函数y=Asin(ωx+φ)的单调区间,函数的单调性的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案