分析 把两个根号里进行变形,那么f(x)可看作为点C到点A和点B距离之和,利用对称得到最小值即可.
解答 解:函数$f(x)=\sqrt{{x^2}-2x+2}+\sqrt{{x^2}-4x+8}$
=$\sqrt{(x-1)^{2}+1}$+$\sqrt{(x-2)^{2}+4}$
=$\sqrt{(x-1)^{2}+(0-1)^{2}}$+$\sqrt{(x-2)^{2}+(0-2)^{2}}$,
可看作点C(x,0)到点A(1,1)和点B(2,2)的距离之和,
作点A(1,1)关于x轴对称的点A′(1,-1),
∴f(x)min=|A'B|=$\sqrt{(2-1)^{2}+(2+1)^{2}}$=$\sqrt{10}$.
故答案为:$\sqrt{10}$.
点评 本题考查学生会利用两点间的距离公式求值,会利用对称得到距离之和最小.学生做题时注意数形结合解决问题.
科目:高中数学 来源: 题型:选择题
A. | [-$\frac{1}{4}$,-$\frac{1}{8}$] | B. | (-$\frac{1}{8}$,-$\frac{1}{16}$) | C. | [-$\frac{1}{8}$,-$\frac{1}{16}$] | D. | (-$\frac{1}{4}$,-$\frac{1}{8}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{3}{8}$π | B. | $\frac{π}{2}$ | C. | $\frac{5}{8}$π | D. | $\frac{7}{8}$π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | B. | C. | D. |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $-\frac{2}{7}$ | B. | $\frac{2}{7}$ | C. | $-\frac{3}{7}$ | D. | $\frac{3}{7}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com