【题目】甲厂以x千克/小时的速度匀速生产某种产品(生产条件要求1≤x≤10),每小时可获得的利润是100(5x+1﹣ )元.
(1)要使生产该产品2小时获得的利润不低于3000元,求x的取值范围;
(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求此最大利润.
【答案】
(1)解:生产该产品2小时获得的利润为100(5x+1﹣ )×2=200(5x+1﹣ )
根据题意,200(5x+1﹣ )≥3000,即5x2﹣14x﹣3≥0
∴x≥3或x≤﹣
∵1≤x≤10,∴3≤x≤10;
(2)解:设利润为 y元,则生产900千克该产品获得的利润为y=100(5x+1﹣ )×
=90000( )=9×104[ + ]
∵1≤x≤10,∴x=6时,取得最大利润为 =457500元
故甲厂应以6千克/小时的速度生产,可获得最大利润为457500元.
【解析】(1)求出生产该产品2小时获得的利润,建立不等式,即可求x的取值范围;(2)确定生产900千克该产品获得的利润函数,利用配方法,可求最大利润.
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD与BDEF均为菱形,设AC与BD相交于点O,若∠DAB=∠DBF=60°,且FA=FC.
(1)求证:FC∥平面EAD;
(2)求二面角A-FC-B的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法错误的是( )
A. “sinθ=”是“θ=30°”的充分不必要条件
B. 命题“若a=0,则ab=0”的否命题是“若a≠0,则ab≠0”
C. △ABC中,“sin A>sin B”是“A>B”的充要条件
D. 如果命题“綈p”与命题“p∨q”都是真命题,那么命题q一定是真命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线l的参数方程(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为:ρ=4cosθ.
(1)把直线l的参数方程化为极坐标方程,把曲线C的极坐标方程化为普通方程;
(2)求直线l与曲线C交点的极坐标(ρ≥0,0≤θ<2π).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两定点F1(﹣1,0),F2(1,0),且是|PF1|与|PF2|的等差中项,则动点P的轨迹是( )
A. 椭圆 B. 双曲线 C. 抛物线 D. 线段
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数(用数字作答).
(1)全体排成一行,其中男生甲不在最左边;
(2)全体排成一行,其中4名女生必须排在一起;
(3)全体排成一行,3名男生两两不相邻.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com