精英家教网 > 高中数学 > 题目详情

【题目】已知函数是定义域为的奇函数,且在上单调递增.

(1)求证:上单调递增;

(2)若不等式成立,求实数的取值范围.

【答案】1)证明见解析;(2

【解析】

1)任取x1x2[20]x1<x2,则0≤x2<x1≤2,根据奇函数的性质、fx)的单调性判断出fx1<fx2),由函数单调性的定义即可证明;

2)由(1)和题意判断fx)在[22]上的单调性,根据单调性、定义域、对数的性质列出不等式组,由对数函数的性质求出实数m的取值范围.

(1)证明:任取x1x2[2,0],2≤x1<x2≤0

0≤x2<x1≤2

f(x)[0,2]上单调递增,f(x)为奇函数,

f(x2)<f(x1),f(x1)<f(x2)

f(x)[2,0]上单调递增;

(2)(1)和题意知:f(x)[2,2]上单调递增,

∴不等式化为:

,

解得

∴实数m的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】抛物线的准线与轴交于点,过点作直线交抛物线于两点.

1)求直线的斜率的取值范围;

2)若线段的垂直平分线交轴于,求证:

3)若直线的斜率依次为,线段的垂直平分线与轴的交点依次为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的最小正周期是,其图象向右平移个单位后得到的函数为奇函数.有下列结论:

①函数的图象关于点对称;②函数的图象关于直线对称;③函数上是减函数;④函数上的值域为.

其中正确结论的个数是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年的流感来得要比往年更猛烈一些据四川电视台“新闻现场”播报,近日四川省人民医院一天的最高接诊量超过了一万四千人,成都市妇女儿童中心医院接诊量每天都在九千人次以上这些浩浩荡荡的看病大军中,有不少人都是因为感冒来的医院某课外兴趣小组趁着寒假假期空闲,欲研究昼夜温差大小与患感冒人数之间的关系,他们分别到成都市气象局与跳伞塔社区医院抄录了去年16月每月20日的昼夜温差情况与患感冒就诊的人数,得到如下资料:

日期

120

220

320

420

520

620

昼夜温差

10

11

13

12

8

6

就诊人数

22

25

29

26

16

12

该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.

若选取的是1月与6月的两组数据,请根据2月至5月份的数据,求出y关于x的线性回归方程

若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的两条渐近线分别为直线,经过右焦点且垂直于的直线分别交两点,若成等差数列,且,则该双曲线的离心率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为.

1)求数列的通项公式;

(2)设求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,底面ABCD是正方形,ACBD交于点OPC⊥底面ABCD, 点E为侧棱PB的中点.

求证:(1) PD∥平面ACE

(2) 平面PAC⊥平面PBD

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求的极大值;

(2)当时,不等式恒成立,求的最小值;

(3)是否存在实数,使得方程上有唯一的根,若存在,求出所有的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,射线均为笔直的公路,扇形区域(含边界)是规划的生态文旅园区,其中分别在射线.经测量得,扇形的圆心角(即)为、半径为千米.根据发展规划,要在扇形区域外修建一条公路,分别与射线交于两点,并要求与扇形弧相切于点不与重合).(单位:弧度),假设所有公路的宽度均忽略不计.

1)试将公路的长度表示为的函数;

2)已知公路每千米的造价为万元,问建造这样一条公路,至少要投入多少万元?

查看答案和解析>>

同步练习册答案