若方程的任意一组解都满足不等式,则的取值范围是
A. | B. | C. | D. |
B
解析试题分析:方程(x-2cosθ)2+(y-2sinθ)2=1(0≤θ≤2π)表示的曲线在x=y的左上方(包括相切),由此可建立不等式,利用三角函数知识,即可求得θ的取值范围. 解:由题意,方程(x-2cosθ)2+(y-2sinθ)2=1(0≤θ≤2π)表示的曲线在x=y的左上方(包括相切),则2cosθ<2sinθ,且 ,故可知sin(θ- ) , ∵0≤θ≤2π,∴-,,进而得到的取值范围是,选B.
考点:直线与圆的位置关系
点评:本题考查直线与圆的位置关系,考查三角函数知识的运用,解题的关键是将问题转化为方程(x-2cosθ)2+(y-2sinθ)2=1(0≤θ≤2π)表示的曲线在x=y的左上方(包括相切).
科目:高中数学 来源: 题型:单选题
若圆C:(x+1)2+(y-1)2=8上有且只有两个点到直线x+y+m=0的距离等于,则实数m的取值范围是( ).
A.(-8,-4)∪(4,8) | B.(-6,-2)∪(2,6) |
C.(2,6) | D.(4,8) |
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
圆(x-3)2+(y+4)2=1关于直线y=—x+6对称的圆的方程是 ( )
A.(x+10)2+(y+3)2=1 | B.(x-10)2+(y-3)2=1 |
C.(x-3)2+(y+10)2=1 | D.(x-3)2+(y-10)2=1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com