精英家教网 > 高中数学 > 题目详情
已知数列{an}满足a1=,且当n≥2,n∈N*时有.

(1)证明数列{}是等差数列;

(2)求数列{||}的前n项和Sn.

(1)证明:当n≥2时,由=.

-2=+2,即=-4.

∴数列{}是以=7为首项,-4为公差的等差数列.

(2)解:由(1)知=7-(n-1)·4=-4n+11.

∴||=|-4n+11|=(n∈N*).

∴当n≤2时,Sn=7+3+…+(11-4n)==n(9-2n).

当n>2时,Sn=7+3+1+5+…+(4n-11)=10+=2n2-9n+20.

∴Sn=(n∈N*).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若数列{bn}满足:bn=
1
an-
1
2
(n∈N*)
,试证明数列bn-1是等比数列;
(2)求数列{anbn}的前n项和Sn
(3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
则{an}的通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
2n-1
2n-1

查看答案和解析>>

同步练习册答案