精英家教网 > 高中数学 > 题目详情
5.数列{an}满足an+1+(-1)nan=2n-1,则{an}的前44项和为(  )
A.990B.870C.640D.615

分析 令a1=a,由递推式,算出前几项,得到相邻奇数项的和为2,偶数项中,每隔一项构成公差为8的等差数列,由等差数列的求和公式计算即可得到所求值.

解答 解:令a1=a,由${a_{n+1}}+{(-1)^n}{a_n}=2n-1$,
可得a2=1+a,a3=2-a,a4=7-a,
a5=a,a6=9+a,a7=2-a,a8=15-a,
a9=a,a10=17+a,a11=2-a,a12=24-a,…
可得(a1+a3)+(a5+a7)+(a9+a11)+…+(a41+a43
=2+2++2+…+2=2×11=22;
a2+a6+a10+…+a42=(1+a)+(9+a)+…+(81+a)
=11(1+a)+$\frac{1}{2}$×11×10×8=451+11a;
a4+a8+a12+…+a44=(7-a)+(15-a)+…+(87-a)
=11(7-a)+$\frac{1}{2}$×11×10×8=517-11a;
即有前44项和为22+451+11a+517-11a=990.
故选A.

点评 本题主要考查了由数列的递推公式求解数列的和,等差数列的求和公式的应用,解题的关键是通过构造等差数列,考查运算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知定义在R上的函数f(x)满足:f(x+y)=f(x)f(y)对任意实数x、y都成立,f(1)=$\frac{1}{2}$,当x>0时,0<f(x)<1.
(1)求f(-1)、f(-2)的值;
(2)求证:f(x)>0;
(3)若f(1-|2-t|)≤4时,不等式x2+tx-1≤0,求实数x取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在区间[-3,3]上随机取一个实数a,能使函数f(x)=x2+2x+a-1在R上有零点的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知复数z=$\frac{1}{1-i}$+i,则复数z的模|z|=(  )
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{10}$D.$\frac{\sqrt{10}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.命题“若?p则q”是真命题,则p是?q的(  )条件.
A.充分B.充分非必要C.必要D.必要非充分

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设数列{an}前n项和为Sn,且Sn+an=2.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足b1=a1,bn=$\frac{3{b}_{n-1}}{{b}_{n-1}+3}$,n≥2 求证{$\frac{1}{{b}_{n}}$}为等差数列,并求数列{bn}的通项公式;
(Ⅲ)设cn=$\frac{{a}_{n}}{{b}_{n}}$,求数列{cn}的前n和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}满足:a1=3,an=an-1+2n-1(n≥2,n∈N*).
(Ⅰ) 求数列{an}的通项;
(Ⅱ) 若bn=n(an-1)(n∈N*),求数列{bn}的前n项和Sn
(Ⅲ)设cn=$\frac{1}{{{a_n}•{a_{n+1}}}}$,Tn=2c1+22c2+…+2ncn(n∈N*),求证:Tn<$\frac{1}{3}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)若x>0,y>0,x+y=1,求证:$\frac{1}{x}$+$\frac{1}{y}$≥4.
(2)设x,y为实数,若4x2+y2+xy=1,求2x+y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若数列{an}满足:a1=2,an+m=am•an(m,n∈N+),则数列{an}的通项公式an=2n

查看答案和解析>>

同步练习册答案