精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)讨论函数的单调性;

(2)若的图象与直线交于两点,且,求实数m的取值范围.

【答案】(1)当时,上单调递减;当时,上单调递减,在上单调递增;当时,上单调递减,在上单调递增;(2).

【解析】

(1)先求导数,根据以及三种情况讨论导函数符号,进而确定对应单调性;

(2)先构造函数,再求导数,根据以及两种情况讨论函数单调性,结合单调性确定满足条件的不等式,解得m的取值范围,最后利用零点存在定理证明所求范围恰好保证函数有两个零点.

(1)依题意,.

①若,则,故上单调递减

②若,令,解得.

i)若,则,则当时,单调递减,当时,单调递增;

ii)若,则,则当时,单调递减,当时,单调递增.

综上所述,当时,上单调递减;当时,上单调递减,在上单调递增;当时,上单调递减,在上单调递增.

(2)令,则由题意可知有两个大于1的实数根,显然.

,则.

,则当时,,当时,

要满足已知条件,必有此时无解;

,则当时,,当时,

要满足已知条件,必有解得.

时,上单调递减,,故函数上有一个零点.

易知,且,下证:.

,则,当时,

时,,故,即

,故

上单调递增,故上有一个零点.

综上所述,实数m的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知双曲线的两个焦点为P为该双曲线上一点,满足P到坐标原点O的距离为d,且,则________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,PA⊥底面ABCDADBCABACAD3PABC4.

1)求异面直线PBCD所成角的余弦值;

2)求平面PAD与平面PBC所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求不等式的解集;

2)若不等式的解集包含[–11],求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列满足是数列的前项和().

(1)设数列是首项和公比都为的等比数列,且数列也是等比数列,求的值;

(2)设,若恒成立,求的取值范围;

(3)设),若存在整数,且,使得成立,求的所有可能值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为坐标原点,椭圆的焦距为,直线截圆与椭圆所得的弦长之比为,椭圆轴正半轴的交点分别为.

1)求椭圆的标准方程;

2)设点)为椭圆上一点,点关于轴的对称点为,直线分别交轴于点.试判断是否为定值?若是求出该定值,若不是定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高尔顿板是英国生物统计学家高尔顿设计用来研究随机现象的模型,在一块木板上钉着若干排相互平行但相互错开的圆柱形小木块,小木块之间留有适当的空隙作为通道,前面挡有一块玻璃,让一个小球从高尔顿板上方的通道口落下,小球在下落的过程中与层层小木块碰撞,且等可能向左或向右滚下,最后掉入高尔顿板下方的某一球槽内.如图所示的小木块中,上面7层为高尔顿板,最下面一层为改造的高尔顿板,小球从通道口落下,第一次与第2层中间的小木块碰撞,以的概率向左或向右滚下,依次经过6次与小木块碰撞,最后掉入编号为12…,7的球槽内.例如小球要掉入3号球槽,则在前5次碰撞中有2次向右3次向左滚到第6层的第3个空隙处,再以的概率向左滚下,或在前5次碰撞中有1次向右4次向左滚到第6层的第2个空隙处,再以的概率向右滚下.

(1)若进行一次高尔顿板试验,求小球落入第7层第6个空隙处的概率;

(2)小明同学在研究了高尔顿板后,利用该图中的高尔顿板来到社团文化节上进行盈利性“抽奖”活动,8元可以玩一次高尔顿板游戏,小球掉入X号球槽得到的奖金为元,其中.

i)求X的分布列:

ii)高尔顿板游戏火爆进行,很多同学参加了游戏,你觉得小明同学能盈利吗?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为两非零有理数列(即对任意的均为有理数),为一无理数列(即对任意的为无理数).

1)已知,并且对任意的恒成立,试求的通项公式.

2)若为有理数列,试证明:对任意的恒成立的充要条件为

3)已知,对任意的恒成立,试计算

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《周脾算经》有记载:一年有二十四个节气,每个节气晷(gui)长损益相同,晷是按照日影测定时刻的仪器,晷长即所测定的影子的长度,二十四节气及晷长变化如图所示,相邻两个节气晷长变化量相同,周而复始,若冬至晷长最长是一丈三尺五寸,夏至晷长最短是一尺五寸,(一丈等于10尺,一尺等于10寸),则秋分节气的晷长是(

A.七尺五寸B.二尺五寸C.五尺五寸D.四尺五寸

查看答案和解析>>

同步练习册答案