A. | 3 | B. | $\sqrt{6}$ | C. | 2 | D. | $\sqrt{3}$ |
分析 由三视图知该几何体是一个直三棱柱沿截面切去上面几何体所剩下的四棱锥,由三视图求出几何元素的长度,由条件和面积公式求出棱长,求出其中较大面的面积,比较出该几何体的各个面中面积最大的面,即可得到答案.
解答 解:由三视图知几何体是:
一个直三棱柱沿截面ABC切去上面几何体所剩下的四棱锥C-ABDE,
直观图如图所示:B是棱的中点,
且三棱柱的底面是边长为2的正三角形,高是2,
由勾股定理得,AB=BC=$\sqrt{{2}^{2}+{1}^{2}}$=$\sqrt{5}$,AC=$\sqrt{{2}^{2}+{2}^{2}}$=2$\sqrt{2}$,
∴△ABC的面积S=$\frac{1}{2}×2\sqrt{2}×\sqrt{5-2}$=$\sqrt{6}$,
∵梯形ABDE的面积S′=$\frac{1}{2}×(1+2)×2$=3>$\sqrt{6}$,
∴该几何体的各个面中面积最大的面是平面ABDE,
最大的面的面积是3,
故选:A.
点评 本题考查三视图求几何体的表面积,由三视图正确复原几何体是解题的关键,考查空间想象能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $({0,\frac{{\sqrt{2}}}{2}})$ | B. | $({0,\frac{1}{2}})$ | C. | $({\frac{1}{2},1})$ | D. | $({\frac{{\sqrt{2}}}{2},1})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-1,-3,-5) | B. | (-1,-3,5) | C. | (1,-3,5) | D. | (-1,3,5) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 大前提错误 | B. | 小前提错误 | C. | 推理形式错误 | D. | 结论正确 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{π}{4}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com