精英家教网 > 高中数学 > 题目详情

【题目】某校为了解高一实验班的数学成绩,采用抽样调查的方式,获取了位学生在第一学期末的数学成绩数据,样本统计结果如下表:

分组

频数

频率

合计

(1)求的值和实验班数学平均分的估计值;

(2)如果用分层抽样的方法从数学成绩小于分的学生中抽取名学生,再从这名学生中选人,求至少有一个学生的数学成绩是在的概率.

【答案】(1);(2)

【解析】

分析:(1)由频率分布表中频数与频率的对应关系,可以求出并补全频率分布表,取每组中点为再由即可求出数学平均分的估计值;

(2)依题意成绩小于分的学生三种分组人数比为所以用分层抽样的方法抽取5名学生中有1人,1人,3人,通过枚举法求出5名学生中至少有一个学生的数学成绩是在的概率.

详解:解:(1)

.

(2)至少有一个学生的数学成绩是在为事件,分层抽样从中抽1,中抽1,中抽3

从这5人中选2人共有10种不同选法: .

其中中至少有一个抽中的情况有9种,

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆,直线

1)若直线与圆O交于不同的两点A B,当时,求k的值.

2)若k=1P是直线上的动点,过P作圆O的两条切线PCPD,切点为CD,问:直线CD是否过定点?若过定点,求出定点坐标;若不过定点,说明理由.

3)若EFGH为圆的两条相互垂直的弦,垂足为M(1),求四边形EGFH的面积的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某乡镇供电所为了调查农村居民用电量情况,随机抽取了500户居民去年的用电量(单位:),将所得数据整理后,画出频率分布直方图如下;其中直方图从左到右前3个小矩形的面积之比为123.

1)该乡镇月均用电量在37.5~39.5之内的居民共有多少户?

2)若按分层抽样的方法从中抽出100户作进一步分析,则用电量在37.5~39.5内居民应抽取多少户?

3)试根据直方图估算该乡镇居民月均用电量的中位数约是多少?(精确到0.01)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是椭圆上任一点,点到直线的距离为,到点的距离为,且.直线与椭圆交于不同两点都在轴上方),且.

(1)求椭圆的方程;

(2)当为椭圆与轴正半轴的交点时,求直线方程;

(3)对于动直线,是否存在一个定点,无论如何变化,直线总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了解高一实验班的数学成绩,采用抽样调查的方式,获取了位学生在第一学期末的数学成绩数据,样本统计结果如下表:

分组

频数

频率

合计

(1)求的值和实验班数学平均分的估计值;

(2)如果用分层抽样的方法从数学成绩小于分的学生中抽取名学生,再从这名学生中选人,求至少有一个学生的数学成绩是在的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将一铁块高温融化后制成一张厚度忽略不计、面积为100dm2的矩形薄铁皮(如图),并沿虚线l1l2裁剪成ABC三个矩形(BC全等),用来制成一个柱体.现有两种方案:

方案①:以为母线,将A作为圆柱的侧面展开图,并从BC中各裁剪出一个圆形作为圆柱的两个底面;

方案②:以为侧棱,将A作为正四棱柱的侧面展开图,并从BC中各裁剪出一个正方形(各边分别与垂直)作为正四棱柱的两个底面.

1BC都是正方形,且其内切圆恰为按方案①制成的圆柱的底面,求底面半径;

2的长为dm,则当为多少时,能使按方案②制成的正四棱柱的体积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB是圆O的直径,点C是圆上异于AB的点,PO垂直于圆O所在的平面,且POOBBC2,点E在线段PB上,则CE+OE的最小值为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,直线的极坐标方程为,现以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,曲线的参数方程为为参数).

(1)求直线的直角坐标方程和曲线的普通方程;

(2)若曲线为曲线关于直线的对称曲线,点分别为曲线、曲线上的动点,点坐标为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,AD⊥平面PDC,AD∥BC, PD⊥PB,AD=1,BC=3,CD=4,PD=2.

(1)求异面直线AP与BC所成角的余弦值.

(2)求直线AB与平面PBC所成角的正弦值

查看答案和解析>>

同步练习册答案