精英家教网 > 高中数学 > 题目详情

【题目】在平面内,一条抛物线把平面分成两部分,两条抛物线最多把平面分成七个部分,设 条抛物线至多把平面分成 个部分,则 ( )
A.
B.
C.
D.

【答案】D
【解析】一条抛物线将平面至多分为2部分,两条抛物线将平面至多分为7部分,

设第n条抛物线将平面至多分为f(n)部分,则第n+1条抛物线的情况如下:增加的这条抛物线,与原来的n条抛物线至多有4n个交点(由于抛物线是曲线,所以每两条抛物线至多有4个交点,这4n个交点将第n+1条抛物线分为4n+1个曲线段,这4n+1个曲线段将每个所处的区域一分为二,即比原来增加了4n+1个区域,所以f(n+1)f(n)=4n+1.

所以答案是:D.


【考点精析】根据题目的已知条件,利用归纳推理的相关知识可以得到问题的答案,需要掌握根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图四边形ABCD为边长为2的菱形,G为AC与BD交点,平面BED⊥平面ABCD,BE=2,AE=2
(Ⅰ)证明:BE⊥平面ABCD;
(Ⅱ)若∠ABC=120°,求直线EG与平面EDC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,若 ,使得 ,则实数 的取值范围是( )
A.(-∞,1]
B.[1,+∞)
C.(-∞,2]
D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四名同学根据各自的样本数据研究变量x,y之间的相关关系,并求得回归直线方程和相关系数r,分别得到以下四个结论:


其中,一定不正确的结论序号是( )
A.②③
B.①④
C.①②③
D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,且曲线 在点 处的切线斜率为-3.
(Ⅰ)求 单调区间;
(Ⅱ)求 的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市卫生防疫部门为了控制某种病毒的传染,提供了批号分别为 的五批疫苗,供全市所辖的 三个区市民注射,每个区均能从中任选其中一个批号的疫苗接种.
(1)求三个区注射的疫苗批号中恰好有两个区相同的概率;
(2)记 三个区选择的疫苗批号的中位数为X,求 X的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数 的图象如图所示,则下列函数与其图象相符的是( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l过点P(-1,2)且与两坐标轴的正半轴所围成的三角形面积等于

(1)求直线l的方程.

(2)求圆心在直线l上且经过点M(2,1),N(4,-1)的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从2名男生和2名女生中任意选择两人在星期六、星期日参加某公益活动,每天一人,则星期六安排一名男生、星期日安排一名女生的概率为(  )

A. B. C. D.

查看答案和解析>>

同步练习册答案