精英家教网 > 高中数学 > 题目详情
已知椭圆的中心在坐标原点,焦点在轴上,椭圆上的点到焦点距离的最大值为,最小值为
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若直线与椭圆相交于两点(不是左右顶点),且以为直径的圆过椭圆的右顶点,求证:直线过定点,并求出该定点的坐标.
(I)
(II)当时,,直线过定点与已知矛盾;当时,,直线过定点
(1)根据椭圆的性质得,所以即可写出椭圆的方程.(2)直线与椭圆联立消去.设,由判别式大于0得,利用跟与系数的关系得以AB为直径的圆过椭圆的右顶点就是垂直,即.代入坐标运算可整理得的关系,保证判别式大于0,且直线不过椭圆的左右顶点,得直线过定点
解:(I)由题意设椭圆的标准方程为


(II)设,由
.


以AB为直径的圆过椭圆的右顶点

,解得
,且满足.当时,,直线过定点与已知矛盾;当时,,直线过定点
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

椭圆=1的右焦点到直线y=x的距离是                    (  )
A.     B.C.1D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题10分)选修4—4:坐标系与参数方程设椭圆的普通方程为
(1)设为参数,求椭圆的参数方程;
(2)点是椭圆上的动点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的两个焦点为(),(1,0),椭圆的长半轴长为2,则椭圆方程为(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆=1的离心率 e =, 则k的值是             

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,点AB分别是椭圆的长轴的左右端点,点F为椭圆的右焦点,直线PF的方程为:.

(1)求直线AP的方程;
(2)设点M是椭圆长轴AB上一点,点M到直线AP的距离等于,求椭圆上的点到点M的距离d的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知椭圆的两焦点分别为,且椭圆上的点到的最小距离为.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点作直线交椭圆两点,设线段的中垂线交轴于,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过椭圆的左焦点轴的垂线交椭圆于点,为右焦点,若,则椭圆的离心率为__________________ .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的离心率为( )
A.B.C.D.

查看答案和解析>>

同步练习册答案