精英家教网 > 高中数学 > 题目详情

已知函数

(Ⅰ)若曲线处的切线相互平行,求的值及切线斜率;
(Ⅱ)若函数在区间上单调递减,求的取值范围;
(Ⅲ)设函数的图像C1与函数的图像C2交于P、Q两点,过线段PQ的中点作x轴的垂线分别交C1C2于点M、N,证明:C1在点M处的切线与C2在点N处的切线不可能平行.

(Ⅰ);(Ⅱ) ;(Ⅲ)见解析.

解析试题分析:(Ⅰ)由已知条件“曲线处的切线相互平行”可知,曲线在这两处的切线的斜率相等,求出曲线的导数,根据求出的值及切线斜率;(Ⅱ)有已知条件“函数在区间上单调递减”可知,在区间上恒成立,得到,则有,依据二次函数在闭区间上的值域,求得函数在区间的值域是,从而得到;(Ⅲ)用反证法,先假设C1在点M处的切线与C2在点N处的切线平行,设,则有,分别代入函数与函数的导函数,求得①,结合P、Q两点是函数的图像C1与函数的图像C2的交点,则坐标满足曲线方程,将①化简得到,设,进行等量代换得到,存在大于1的实根,构造函数,结合导函数求得函数在区间是单调递减的,从而,得出矛盾.
试题解析:(Ⅰ)

∵在处的切线相互平行,
,即,解得
.
(Ⅱ)∵在区间上单调递减,
在区间上恒成立,
,即
,∴
.
(Ⅲ)
假设有可能平行,则存在使

不妨设
则方程存在大于1的实根,设
,∴,这与存在使矛盾.
考点:1.二次函数的图像与性质;2.利用导数研究函数的单调性;3.反证法;4.利用导数研究曲线切线的斜率;5.不等式恒成立问题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数,其中为正整数,均为常数,曲线处的切线方程为.
(1)求的值;
(2)求函数的最大值;
(3)证明:对任意的都有.(为自然对数的底)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数.
(1)若恒成立,求实数的值;
(2)若方程有一根为,方程的根为,是否存在实数,使?若存在,求出所有满足条件的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a为实数,x=1是函数的一个极值点。
(Ⅰ)若函数在区间上单调递减,求实数m的取值范围;
(Ⅱ)设函数,对于任意,有不等式
恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数)。
⑴若,求上的最大值和最小值;
⑵若对任意,都有,求的取值范围;
⑶若上的最大值为,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若处取得极值,求实数的值;
(2)求函数在区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在实数集R上定义运算:
(Ⅰ)求的解析式;
(Ⅱ)若在R上是减函数,求实数a的取值范围;
(Ⅲ)若,在的曲线上是否存在两点,使得过这两点的切线互相垂直?若存在,求出切线方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求函数的最小值;
(Ⅱ)求证:
(Ⅲ)对于函数定义域上的任意实数,若存在常数,使得都成立,则称直线为函数的“分界线”.设函数是否存在“分界线”?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)当时,函数处有极小值,求函数的单调递增区间;
(2)若函数有相同的极大值,且函数在区间上的最大值为,求实数的值(其中是自然对数的底数).

查看答案和解析>>

同步练习册答案