【题目】已知函数,.
(1)讨论函数的单调性;
(2)记表示中的最小值,设,若函数至少有三个零点,求实数的取值范围.
【答案】(1)单减区间为和,单增区间为.(2)
【解析】
(1)求出,由得,,讨论两根大小,得出的正负,从而确定单调区间;
(2)只有唯一零点2,因此在上至少有两个零点才能满足题意,根据(1)中得出的单调性,分类讨论的极值与零点可得.
(1)的定义域为,
∴,令,得.
①当,即时,;
②当,即时,;
③当,即时,,
综上,当时,的单减区间为和,单增区间为;当时,的单减区间为,无增区间;当时,的单减区间为和,单增区间为.
(2)的唯一一个零点是,∴,由(1)可得: (i)当时,,此时至多有两个零点,不符合题意;(ii)当时,在定义域上单减递减,此时至多有两个零点,不符合题意; (ⅲ)当时,若,即,此时至多有两个零点,不符合题意;若,即,此时,即,此时恰好有三个零点,符合题意;若,即,此时, ,记,所以,所以在上单调递增,所以,此时恰好有四个零点,符合题意,综上,.
科目:高中数学 来源: 题型:
【题目】记无穷数列的前n项,,…,的最大项为,第n项之后的各项,,…的最小项为,.
(1)若数列的通项公式为,写出,,并求数列通项公式;
(2)若数列的通项公式为,判断是否为等差数列,若是,求出公差;若不是,请说明理由;
(3)若数列为公差大于零的等差数列,求证:是等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高一年级有甲,乙,丙三位学生,他们前三次月考的物理成绩如表:
第一次月考物理成绩 | 第二次月考物理成绩 | 第三次月考物理成绩 | |
学生甲 | 80 | 85 | 90 |
学生乙 | 81 | 83 | 85 |
学生丙 | 90 | 86 | 82 |
则下列结论正确的是( )
A. 甲,乙,丙第三次月考物理成绩的平均数为86
B. 在这三次月考物理成绩中,甲的成绩平均分最高
C. 在这三次月考物理成绩中,乙的成绩最稳定
D. 在这三次月考物理成绩中,丙的成绩方差最大
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知曲线的参数方程为(, 为参数).以坐标原点为极点, 轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程为.
(1)当时,求曲线上的点到直线的距离的最大值;
(2)若曲线上的所有点都在直线的下方,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在矩形中,已知,,点,分别在边,上,且,将梯形沿折起,使在平面上的射影恰好落在线段靠近的三等分点处,得到图2中的立体图形.
(1)(2)
(1)在图2中,求证:平面;
(2)求二面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图三棱锥A-BCD中,BD⊥CD,E,F分别为棱BC,CD上的点,且BD∥平面AEF,AE⊥平面BCD.
(1)求证:平面AEF⊥平面ACD;
(2)若,为的中点,求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在椭圆上任取一点(不为长轴端点),连结、,并延长与椭圆分别交于点、两点,已知的周长为8,面积的最大值为.
(1)求椭圆的方程;
(2)设坐标原点为,当不是椭圆的顶点时,直线和直线的斜率之积是否为定值?若是定值,请求出这个定值;若不是定值,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com