精英家教网 > 高中数学 > 题目详情
6.用数学归纳法证明不等式1+$\frac{1}{{2}^{3}}$+$\frac{1}{{3}^{3}}$+…+$\frac{1}{{n}^{3}}$<2-$\frac{1}{n}$(n≥2,n∈N+)时,第一步应验证不等式(  )
A.1+$\frac{1}{{2}^{3}}$<2-$\frac{1}{2}$B.1+$\frac{1}{{2}^{3}}$+$\frac{1}{{3}^{3}}$<2-$\frac{1}{3}$
C.1+$\frac{1}{{2}^{3}}$<2-$\frac{1}{3}$D.1+$\frac{1}{{2}^{3}}$+$\frac{1}{{3}^{3}}$<2-$\frac{1}{4}$

分析 利用n=2写出不等式的形式,就是第一步应验证不等式.

解答 解:当n=2时,左侧=1+$\frac{1}{{2}^{3}}$,右侧=2-$\frac{1}{2}$,左侧<右侧.
所以用数学归纳法证明不等式1+$\frac{1}{{2}^{3}}$+$\frac{1}{{3}^{3}}$+…+$\frac{1}{{n}^{3}}$<2-$\frac{1}{n}$(n≥2,n∈N+)时,第一步应验证不等式:1+$\frac{1}{{2}^{3}}$<2-$\frac{1}{2}$.
故选:A.

点评 本题考查数学归纳法的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.化简:1+$\frac{1}{2+\frac{1}{3+\frac{1}{x}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数y=tan($\frac{π}{3}$-x)的单调递减区间为$(kπ-\frac{π}{6},kπ+\frac{5π}{6}),k∈Z$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设全集U=R,集合A={x|0<x<4},B={x|x<1或x>3}.
求A∩B,A∪B,A∩(∁UB).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数g(x)=-x2+2x+3在[0,4]上的值域为(  )
A.[-5,3]B.[3,4]C.(-∞,4]D.[-5,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.极坐标方程ρ=4cosθ、ρsinθ=2表示的曲线分别是(  )
A.直线、直线B.圆、直线C.直线、圆D.圆、圆

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,内角A、B、C的对边分别为a,b,c,且bsinA=$\sqrt{3}$acosB.则角B的大小为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列结论正确的是(  )
A.各个面都是三角形的几何体是三棱锥
B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥
C.圆锥的顶点与底面圆周上的任意一点的连线都是母线
D.棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是六棱锥

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.使直线a,b为异面直线的充分不必要条件是(  )
A.a?平面α,b?平面α,a与b不平行
B.a?平面α,b?平面α,a与b不相交
C.a∥直线c,b∩c=A,b与a不相交
D.a?平面α,b?平面β,α∩β=l,a与b无公共点

查看答案和解析>>

同步练习册答案