精英家教网 > 高中数学 > 题目详情
设函数在区间上的导函数为在区间上的导函数为,若在区间恒成立,则称函数在区间上的“凸函数”。已知,若对任意的实数满足时,函数在区间上为“凸函数”,则的最大值为
A.4           B.3            C. 2           D.1
C

试题分析:当|m|≤2时,f″(x)=x2-mx-3<0恒成立等价于当|m|≤2时,mx>x2-3恒成立.
当x=0时,f″(x)=-3<0显然成立.
当x>0时,x-<m
∵m的最小值是-2,∴x-<-2,从而解得0<x<1;
当x<0时,x->m
∵m的最大值是2,∴x->2,从而解得-1<x<0.
综上可得-1<x<1,从而(b-a)max=1-(-1)=2,故选C.
点评:中档题,本题涉及函数的导数计算及不等式恒成立问题,关键是要理解题目所给信息(新定义),对考生知识迁移与转化能力有较好的考查。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数 )
(1)若从集合中任取一个元素,从集合中任取一个元素,求方程恰有两个不相等实根的概率;
(2)若从区间中任取一个数,从区间中任取一个数,求方程没有实根的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知,用符号表示不超过的最大整数。函数有且仅有3个零点,则的取值范围是__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数和函数的图像关于直线对称,
则函数的解析式为

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

据气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度v(km/h)与时间t(h)的函数图象如图所示,过线段OC上一点T(t,0)作横轴的垂线l,梯形OABC在直线l左侧部分的面积即为t(h)内沙尘暴所经过的路程s(km).

(1)当t=4时,求s的值;
(2)将s随t变化的规律用数学关系式表示出来;
(3)若N城位于M地正南方向,且距M地650 km,试判断这场沙尘暴是否会侵袭到N城,如果会,在沙尘暴发生后多长时间它将侵袭到N城?如果不会,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(1)判断的奇偶性
(2)用定义法证明上单调递增

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为确保信息安全,需设计软件对信息加密,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文:对应密文:,当接收方收到密文14,9,23,28时,解密得到的明文为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

对于定义在实数集上的两个函数,若存在一次函数使得,对任意的,都有,则把函数的图像叫函数的“分界线”。现已知为自然对数的底数),
(1)求的递增区间;
(2)当时,函数是否存在过点的“分界线”?若存在,求出函数的解析式,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)求在点处的切线方程;
(Ⅱ)若存在,满足成立,求的取值范围;
(Ⅲ)当时,恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案