精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 的长轴长为6,且椭圆与圆 的公共弦长为.

(1)求椭圆的方程.

(2)过点作斜率为的直线与椭圆交于两点 ,试判断在轴上是否存在点,使得为以为底边的等腰三角形.若存在,求出点的横坐标的取值范围,若不存在,请说明理由.

【答案】(1);(2)见解析.

【解析】试题分析:(1)由长轴长可得值,公共弦长恰为圆直径,可知椭圆经过点,利用待定系数法可得椭圆方程;(2)可令直线的解析式为,设 的中点为,将直线方程与椭圆方程联立,消去,利用根与系数的关系可得,由等腰三角形中,可得,得出.由此可得点的横坐标的范围.

试题解析:(1)由题意可得,所以.由椭圆与圆 的公共弦长为,恰为圆的直径,可得椭圆经过点,所以,解得.所以椭圆的方程为.

(2)直线的解析式为,设 的中点为.假设存在点,使得为以为底边的等腰三角形,则.由,故,所以 .因为,所以,即,所以.当时, ,所以;当时, ,所以.

综上所述,在轴上存在满足题目条件的点,且点的横坐标的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为 ,且a1与a5的等差中项为18.
(1)求{an}的通项公式;
(2)若an=2log2bn , 求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年春节期间,某服装超市举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.

方案一:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸出2个红球则打6折,若摸出1个红球,则打7折;若没摸出红球,则不打折.

方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.

(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;

(2)若某顾客消费恰好满1000元,试从概率的角度比较该顾客选择哪一种抽奖方案更合算?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga(x+2)+loga(3﹣x),其中0<a<1.
(1)求函数f(x)的定义域;
(2)若函数f(x)的最小值为﹣4,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)直线为曲线处的切线,求实数

(Ⅱ)若,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(1)五边形中,

,沿折到的位置,得到四棱锥,如图(2),点为线段的中点,且平面.

1)求证:平面平面

2)若直线与所成角的正切值为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在R上的偶函数,在[0,+∞)上单调递增.若a=f(log ),b=f(log ),c=f(﹣2),则a,b,c的大小关系是(
A.a>b>c
B.b>c>a
C.c>b>a
D.c>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,BC=4,且sinB,sinA,sinC成等差数列,建立适当的直角坐标系,求点A的轨迹方程.

查看答案和解析>>

同步练习册答案