(本小题满分12分)如图,在底面是直角梯形的四棱锥P—ABCD中,,平面ABCD,PA=AB=BC=3,梯形上底AD=1。
(1)求证:平面PAB;
(2)求面PCD与面PAB所成锐二面角的正切值;
(3)在PC上是否存在一点E,使得DE//平面PAB?若存在,请找出;若不存在,说明理由。
(本小题满分12分)
(Ⅰ)证明:由题意
………………………………… 4分
(Ⅱ)(法一)延长BA、CD交于Q点,过A作AH⊥PQ,垂足为H,连DH
由(Ⅰ)及AD∥BC知:AD⊥平面PAQ
∴ AD⊥PQ且AH⊥PQ
所以PQ⊥平面HAD,即PQ⊥HD.
所以∠AHD是面PCD与面PBA所成的二面角的平面角. …………… 6分
易知,所以
所以面PCD与面PAB所成二面角的正切值为. ………………8分
(Ⅲ)解:存在. ……………………………………………………9分
在BC上取一点F,使BF=1,则DF∥AB.由条件知,PC=,在PC上取点E,使PE=,则EF∥PB. ………………10分
所以,平面EFD∥平面PAB
故 DE∥平面PAB …………………………………………………12分
【解析】略
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com