精英家教网 > 高中数学 > 题目详情
如图,直三棱柱A1B1C1-ABC中,C1C=CB=CA=2,AC⊥CB.D、E分别为棱C1C、B1C1的中点.
(1)求A1B与平面A1C1CA所成角的大小;
(2)求二面角B-A1D-A的大小;
(3)试在线段AC上确定一点F,使得EF⊥平面A1BD.
分析:法一:
(1)连接A1C.由A1B1C1-ABC为直三棱柱,知CC1⊥底面ABC,CC1⊥BC.由AC⊥CB,知BC⊥平面A1C1CA.所以∠BA1C为A1B与平面A1C1CA所成角,由此能求出A1B与平面A1C1CA所成角的大小.
(2)分别延长AC,A1D交于G.过C作CM⊥A1G 于M,连接BM,由BC⊥平面ACC1A1,知CM为BM在平面A1C1CA内的射影,所以∠CMB为二面角B-A1D-A的平面角,由此能求出二面角B-A1D-A的大小.
(3)取线段AC的中点F,则EF⊥平面A1BD.证明如下:由A1B1C1-ABC为直三棱柱,知B1C1∥BC,由B1C1⊥平面A1C1CA,能证明EF⊥平面A1BD.
解法二:
(1)同解法一
(2)由A1B1C1-ABC为直三棱柱,C1C=CB=CA=2,AC⊥CB,D、E分别为C1C、B1C1的中点.建立空间直角坐标系得:C(0,0,0),B(2,0,0),A(0,2,0),C1(0,0,2),B1(2,0,2),A1(0,2,2),D(0,0,1),E(1,0,2).用向量法求二面角B-A1D-A的大小.
(3)F为AC上的点,故可设其坐标为(0,b,0),所以
EF
=(-1,b,-2)
.由向量法证明EF⊥平面A1BD.
解答:(本小题共13分)
解法一
解:(1)连接A1C.∵A1B1C1-ABC为直三棱柱,
∴CC1⊥底面ABC,∴CC1⊥BC.
∵AC⊥CB,∴BC⊥平面A1C1CA.
∴∠BA1C为A1B与平面A1C1CA所成角,
∠BA1C=arctan
BC
A1C
=arctan
2
2

∴A1B与平面A1C1CA所成角为arctan
2
2

(2)分别延长AC,A1D交于G.
过C作CM⊥A1G 于M,连接BM,
∵BC⊥平面ACC1A1
∴CM为BM在平面A1C1CA内的射影,
∴BM⊥A1G,∴∠CMB为二面角B-A1D-A的平面角,
平面A1C1CA中,C1C=CA=2,D为C1C的中点,
∴CG=2,DC=1 在直角三角形CDG中,
CM=
2
5
5
,∴tanCMB=
5

即二面角B-A1D-A的大小为arctan
5

(3)取线段AC的中点F,则EF⊥平面A1BD.
证明如下:
∵A1B1C1-ABC为直三棱柱,∴B1C1∥BC,
∵由(1)BC⊥平面A1C1CA,∴B1C1⊥平面A1C1CA,
∵EF在平面A1C1CA内的射影为C1F,当F为AC的中点时,
C1F⊥A1D,∴EF⊥A1D.
同理可证EF⊥BD,
∴EF⊥平面A1BD.
解法二:
(1)同解法一
(2)∵A1B1C1-ABC为直三棱柱,C1C=CB=CA=2,
AC⊥CB,D、E分别为C1C、B1C1的中点.
建立如图所示的坐标系得:
C(0,0,0),B(2,0,0),A(0,2,0),
C1(0,0,2),B1(2,0,2),A1(0,2,2),
D(0,0,1),E(1,0,2).
BD
=(-2,0,1)
BA1
=(-2,2,2)

设平面A1BD的法向量为
n
=(1,λ,μ),
n
BD
=0
n
BA1
=0.
-2+μ=0
-2+2λ+2μ=0.
λ=-1
μ=2.
n
=(1,-1,2)

平面ACC1A1的法向量为
m
=(1,0,0),cos<
n
m
>=
1
6
=
6
6

即二面角B-A1D-A的大小为arccos
6
6

(3)F为AC上的点,故可设其坐标为(0,b,0),
EF
=(-1,b,-2)

由(2)知
n
=(1,-1,2)
是平面A1BD的一个法向量,
欲使EF⊥平面A1BD,当且仅当
FE
n

∴b=1,
∴当F为AC的中点时,EF⊥平面A1BD.
点评:本题考查直线与平面所成角的求法、二面角的求法和直线与平面垂直的证明.解题时要认真审题,注意合理地把立体问题转化为平面问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图在直三棱柱ABC-A1B1C1中∠ACB=90°,AA1=2,AC=BC=1,则异面直线A1B与AC所成角的余弦值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直三棱柱ABC-A1B1C1中,∠ACB=90°,M,N分别为A1B,B1C1的中点.
(1)求证BC∥平面MNB1
(2)求证平面A1CB⊥平面ACC1A1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直三棱柱ABCA1B1C1的底面ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分别是A1B1、A1A的中点.
(1)求
BN
的模;
(2)求异面直线BA1与CB1所成角的余弦值;
(3)求证:A1B⊥C1M.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•大兴区一模)如图,直三棱柱ABC-A1B1C1中,△ABC是等边三角形,D是BC的中点.
(Ⅰ)求证:直线A1D⊥B1C1
(Ⅱ)判断A1B与平面ADC1的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•凉山州二模)如图,直三棱柱ABC-A1B1C1中,AB=AC,BC=2BB1,D为BC中点.
(1)证明:A1B∥平面C1AD;
(2)证明:平面B1AD⊥平面ClAD.

查看答案和解析>>

同步练习册答案